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Abstract –The theory of probabilistic dynamics (TPD) offers a framework capable of modeling the
interaction between the physical evolution of a system in transient conditions and the succession of
branchings defining a sequence of events. Nonetheless, the Chapman-Kolmogorov equation, besides being
inherently Markovian, assumes instantaneous changes in the system dynamics when a setpoint is crossed.
In actuality, a transition between two dynamic evolution regimes of the system is a two-phase process.
First, conditions corresponding to the triggering of a transition have to be met; this phase will be referred
to as the activation of a “stimulus.” Then, a time delay must elapse before the actual occurrence of the
event causing the transition to take place. When this delay cannot be neglected and is a random quantity,
the general TPD can no longer be used as such. Moreover, these delays are likely to influence the ordering
of events in an accident sequence with competing situations, and the process of delineating sequences in
the probabilistic safety analysis of a plant might therefore be affected in turn. This paper aims at present-
ing several extensions of the classical TPD, in which additional modeling capabilities are progressively
introduced. A companion paper sketches a discretized approach of these problems.

I. INTRODUCTION

As an accident transient develops after the occur-
rence of an initiating event perturbing the steady-state
working conditions of a plant, the description of its dy-
namic evolution has to be supplemented by giving all
possible causes of possibly stochastic bifurcation be-
tween deterministic sections of a trajectory in the space
of process variables. These changes in the system dy-
namics are due either to stochastic hardware failures or
to automatic control-protection or operator-driven ac-
tions aiming at mitigating the accident. In turn, the value
taken by the process variables can significantly affect

the probability of a transition between two dynamic evo-
lution modes. This statement is obvious when the dynam-
ics is modified by the activation of a protection device
after the crossing of a threshold~i.e., setpoint! on the
process variables. But, the failure rate of hardware com-
ponents is also likely to be influenced by variations in
temperature or pressure, for instance.

This close interaction between the process variables
evolution and the succession of events defining an acci-
dent scenario is at the heart of the modeling of accident
propagation in industrial systems, such as nuclear power
plants. Yet, it has not received sufficient consideration,
or at least sufficient visibility, in the event tree0fault tree
methodology typically used in conventional probabilis-
tic safety analysis~PSA! studies.1,2*E-mail: pelabeau@ulb.ac.be
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Observing and formalizing this interaction process
gave rise to the development of the theory of probabilis-
tic dynamics~TPD!, also known as the theory of contin-
uous event trees.3 The original paper accounted only for
stochastic transitions between system states, but the theory
was generalized to setpoint transitions,4 and it then fully
appeared as an extension of classical event trees. Proba-
bilistic dynamics is also known to put within a common
framework different previous attempts at bringing the
dynamics into the sequence delineation problem.5

Up to now and mainly for setpoint transitions, ef-
forts to reinterpret the actual engineering practice in terms
of the TPD equations led to confirmation of the ap-
proach.6 However, the studies that were performed7

indicated

• the difficulties associated with ensuring the over-
all consistency of a correct sequence delineation

• the need to extend the TPD in order to incorporate
house event information as well as operator delays.

Other theoretical as well as practical applications,
mostly in the context of level-1 PSA studies, are re-
ported in Ref. 8. A nonnuclear case, pertaining to aero-
nautics, is described in Ref. 9. More recently, a Monte
Carlo–based level-2 application of the TPD was pro-
pounded in Ref. 10. Also, when considering level-2 prob-
lems, or in general continuous event trees in which
branchings have a high uncertainty in the occurrence of
phenomena~and are therefore more stochastic!, the TPD
needs some adaptations in order to obtain an equivalent
consistency. These extensions are the subject of this work.
A companion paper11 sketches a discretized treatment of
these new problems.

The main concept introduced in this extension of the
theory is that of stimulus activation, which must take
place prior to the actual transition between two system
configurations corresponding to different dynamic
evolutions. A stimulus, which is usually defined in cor-
respondence to some specific values of the process
variables, can for instance be a signal initiating the
decision-making process of the operator team or the cross-
ing of a setpoint triggering the action of an automatic
protection device. It could also correspond to the entry
of the system in a region of phase-space where ignition
criteria are fulfilled. In general, the term “stimulus” cov-
ers any situation that potentially causes, after a given
time delay, an event to occur and subsequently a branch-
ing to take place in the continuous event tree.

Time delays are of paramount importance in this
description of an accident progression. Indeed, the com-
petition between events determining the sequence delin-
eation is driven as before by the minimum time to the
occurrence of an event, but this process is now given by
the sum of two~possibly! random times: the time inter-
val necessary to reach a zone in phase-space where a
stimulus is activated and the time delay following this

activation before the system dynamics is actually modi-
fied. This more complex interaction has to be modeled in
the dynamic reliability framework.

This paper is organized so as to highlight the evolu-
tion of the methodology. In order to do so, the fundamen-
tal aspects of the TPD are reviewed and summarized in
Sec. II, before its extension to a semi-Markov treatment
is presented in a slightly reformulated fashion and dis-
cussed. Section III displays original adaptations of the
semi-Markov TPD in order to account for specific as-
pects of PSA. It first deals with instantaneous and ran-
dom variations of the process variables; then, it introduces
the concept of stimulus and how it can be implemented
within the semi-Markov theory. This latter assumption
is—partly—released in Sec. IV, where a non-Markov
treatment is provided. It is then proven that this latter
modeling easily reduces to the setpoint approach of Ref. 4
if appropriate simplifications are brought into the equa-
tions. A test case is presented in Sec. V, illustrating the
new concepts and showing the coherence of the theory.
Concluding remarks are then provided.

II. THE THEORY OF CONTINUOUS
EVENT TREES

The Markovian version of the TPD has been exten-
sively described in Refs. 3 and 12, both in differential
and integral forms. We summarize the main aspects of
the latter case in Sec. II.A and explain how this theory
relates to a branching process, allowing a dynamic ap-
proach to PSA. As the dynamic aspects of man-machine
interactions in accident transients were incorporated, mod-
els of the human operator were soon envisioned for in-
clusion in dynamic PSA~Refs. 13 and 14!. Yet, these
aspects require a broader framework than the purely Mar-
kovian one, and this initial extension of the theory is
reproduced as a starting point for new semi-Markovian
and non-Markovian extensions entailed by the level-2
PSA constraints.

II.A. Integral Equations of the
Markovian TPD

Let Sx be the vector of process variables describing
the dynamic behavior of the plant. We denote byi the
group of system configurations in which the dynamic
evolution is given by the equivalent explicit form

Sx~t ! 5 Sgi ~t, Sxo! , Sxo 5 Sgi ~o, Sxo! . ~1!

The branchings in an accident sequence correspond to
transitions between two dynamicsj andi , which are char-
acterized by transition ratesp~ j r i 6 Sx!, possibly de-
pendent on the process variables value but explicitly
independent of time in the Markovian case. The total
transition rate out of configurationj is written as
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l j ~ Sx! 5 (
iÞj

p~ j r i 6 Sx! . ~2!

The integral form of the Chapman-Kolmogorov
~C.K.! equation gives the evolution of the probability
density function~pdf! p~ Sx, i, t ! of finding the plant in a
configurationi with process variablesSx a timet after the
beginning of the transient. We can express the result given
in Ref. 3 in terms of the outgoing densityc~ Sx, i, t ! leav-
ing configurationi at Sx, t:

c~ Sx, i, t ! [ l i ~ Sx!p~ Sx, i, t ! , ~3!

whose evolution is given by

c~ Sx, i, t ! 5 Ep~ Su, i,o!d~ Sx 2 Sgi ~t, Su!!

3 l i ~ Sx!e
2E

o

t

l i ~ Sgi ~s, Su!! ds
d Su

1 (
jÞi
E

o

t

dtEd Su c~ Su, j,t! [p~ j r i 6 Su!

3 d~ Sx 2 Sgi ~t 2 t, Su!!

3 l i ~ Sx!e
2E

o

t2t

l i ~ Sgi ~s, Su!! ds
, ~4!

where [p~ j r i 6 Su! [ p~ j r i 6 Su!0l j ~ Su! is the probability
of a transition to configurationi , given configurationj is
exited at point Su in the process variables space.

The interpretation of Eq.~4! is direct: The plant leaves
configurationi at timet with process variablesSx either if
it has been in configurationi from the beginning of the
transient, following dynamicsSgi ~t, Su! during a time dis-
tributed according tol i ~ Sx!exp~2*o

t l i ~ Sgi ~s, Su!! ds!, or if
the last transition to configurationi took place at time
t , t, where the system left configurationj and the so-
journ time t 2 t in dynamicsi was again given by the
exponential distribution.

How can Eq.~4! bring insight into the sequence gen-
eration process? The link between the mathematical ex-
pressions and the branching process comes from the
formal development ofc~ Sx, i, t ! in Neumann series~see
Ref. 15!:

c~ Sx, i, t ! 5 (
n5o

`

c~n! ~ Sx, i, t ! . ~5!

It can be easily checked4 from Eqs.~3!, ~4!, and~5! that

c~o! ~ Sx, i, t ! 5 Ep~ Su, i,o!l i ~ Sx!d~ Sx 2 Sgi ~t, Su!!

3 e
2E

o

t

l i ~ Sgi ~s, Su!! ds
d Su ~6a!

and

c~n! ~ Sx, i, t ! 5 (
jÞi
E

o

t

dtEd Su [p~ j r i 6 Su!c~n21! ~ Su, j,t!

3 d~ Sx 2 Sgi ~t 2 t, Su!!

3 l i ~ Sx!e
2E

o

t2t

l i ~ Sgi ~s, Su!! ds
n $ 1 ; ~6b!

c~n!~ Sx, i, t ! is directly understood as the outgoing den-
sity of i at point Sx and timet aftern previous transitions
between system configurations. In an event tree interpre-
tation of the process,c~n!~ Sx, i, t ! appears as the density
of branching out of dynamicsi at Sx, t, givenn branchings
had already taken place after the occurrence of the ini-
tiating event. These densities in the different system dy-
namics can be iteratively calculated from Eq.~6b!, and
the probability density to be in a given dynamics~i.e., on
a given branch! aftern branchings is written

p~n! ~ Sx, i, t ! 5 (
jÞi
E

o

t

dtEd Su c~n21! ~ Su, j,t! [p~ j r i 6 Su!

3 d~ Sx 2 Sgi ~t 2 t, Su!!

3 e
2E

o

t2t

l i ~ Sgi ~s, Su!! ds
. ~7!

It was shown in Ref. 4 that classical event trees can be
rigorously derived from this theory when considering
only setpoint transitions, i.e., transitions taking place when
thresholds on the process variables are crossed.

An alternative presentation is based on the ingoing
densityw~ Sx, i, t ! into dynamicsi , which is defined by

w~ Sx, i, t ! 5 (
jÞi

p~ j r i 6 Sx!p~ Sx, j, t !

5 (
jÞi

[p~ j r i 6 Sx!c~ Sx, j, t ! . ~8!

The evolution of this density is straightforwardly de-
duced from Eqs.~4! and~8!:

w~ Sx, i, t ! 5 (
jÞi

[p~ j r i 6 Sx!Ep~ Su, j,o!d~ Sx 2 Sgj ~t, Su!!

3 l j ~ Sx!e
2E

o

t

l j ~ Sgj ~s, Su!! ds
d Su

1 (
jÞi
E

o

t

dtEd Su w~ Su, j,t!l j ~ Sx!

3 e
2E

o

t2t

l j ~ Sgj ~s, Su!! ds
[p~ j r i 6 Sx!

3 d~ Sx 2 Sgj ~t 2 t, Su!! . ~9!
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Both outgoing and ingoing densities are directly re-
lated to the pdfp~ Sx, i, t ! as

p~ Sx, i, t ! 5 Ep~ Su, i,o!d~ Sx2 Sgi ~t, Su!!e
2E

o

t

l i ~ Sgi ~s, Su!! ds
d Su

1 (
jÞi
E

o

t

dtEd Su c~ Su, j,t! [p~ j r i 6 Su!

3 d~ Sx 2 Sgi ~t 2 t, Su!!{e
2E

o

t2t

l i ~ Sgi ~s, Su!! ds

5Ep~ Su, i,o!d~ Sx 2 Sgi ~t, Su!!e
2E

o

t

l i ~ Sgi ~s, Su!! ds
d Su

1 E
o

t

dtEd Su w~ Su, i,t!{d~ Sx 2 Sgi ~t 2 t, Su!!

3 e
2E

o

t2t

l i ~ Sgi ~s, Su!! ds
. ~10!

II.B. Releasing the Purely Markovian
Assumption

The Markovian assumption we have used so far
amounts to assuming the system is without memory: No
matter how long a system has been evolving in the cur-
rent configuration, the probability of leaving it after a
given time delay remains the same. In other words, the
future evolution depends only on the current situation of
the plant and not on its past history in the course of the
transient. Mathematically speaking, the stochastic branch-
ing process is permanentlyregenerated, and the dis-
tribution of the sojourn time in a configuration is
exponential, with a transition rate having no explicit de-
pendence on time.

As mentioned before, such an assumption is not ap-
propriate for the modeling of human actions. This is one
of the main reasons why a semi-Markovian extension of
the TPD was soon proposed. In such a stochastic process
indeed, only the entry times in a new state are regenera-
tion points. Consequently, any modeling in this assump-
tion must refer to this specific event and then allow any
type of distribution for the sojourn time in a system con-
figuration. This can be done by using the ingoing densi-
ties introduced above and by slightly modifying Eq.~9!:

w~ Sx, i, t ! 5 (
jÞi
E

o

t

dtEd Su @p~ Su, j,t!d~t! 1 w~ Su, j,t!#

3 d~ Sx 2 Sgj ~t 2 t, Su!!qji ~t 2 t; Su! . ~11!

Equation~11! makes use ofqji ~t; Su!, probability per unit
time of a transition between dynamicsj and i at time t
after entering dynamicsj at point Su. Comparing Eqs.~9!
and~11!, one can easily check that this quantity takes the
following form in the Markovian case:

qji ~t; Su!d~ Sx 2 Sgj ~t, Su!!

5 [p~ j r i 6 Sx!{fj ~t; Su!{d~ Sx 2 Sgj ~t, Su!! , ~12!

wherefj ~t; Su! is the pdf of the plant leaving configuration
j at time t after entering it at point Su. This density is
exponential in the Markovian assumption, but the factor-
ization of qji in factors f and [p is valid in other cases,
provided the probabilities[p~ j r i 6 Sx! are ~explicitly!
independent of the time elapsed in dynamicsj ~see Ap-
pendix A!. When this assumption is satisfied, the sojourn
time in a given configuration and the transition proba-
bilities out of it are uncoupled, and the modeling can rest
on the outgoing densityc~ Sx, i, t !. We will nonetheless
present in Secs. XXX a more general treatment based on
the ingoing density.

A backward formalism is useful for the deduction of
evolution equations for the dynamic equivalent to well-
known system characteristics, such as reliability or mean
time to failure if the system failure is defined by the first
crossing of the border]D of a safety domainD in the
process variables space. The backward semi-Markov form
of the TPD is provided in Appendix B as well as the
backward version of all subsequent developments.

III. NEW PSA FEATURES IN
SEMI-MARKOV TPD

The main characteristics of the TPD that we summa-
rized in Sec. II are based on the following description of
accident sequences. Each time an event causes a modi-
fication in the system configuration, the evolution laws
of the process variables are likely to be affected. The
new dynamics is assumed to start from the final situation
reached in the previous configuration, which is reached
immediately after the branching is solicited. This double
hypothesis is not always true as either an instantaneous
change of the process variables value can sometimes oc-
cur at the branching point or the occurrence of the event
causing the branching is delayed. The corresponding ad-
aptation of the dynamic reliability methodology is pre-
sented in Secs. III.A and III.B.

III.A. Extension to Random Shocks

Consider for instance a hydrogen laminar deflagra-
tion in the reactor containment in the propagation of an
accident. The timescale on which this event takes place
is much smaller than the characteristic time on which the
whole sequence develops, and the explosion can there-
fore be assumed instantaneous when modeling the dy-
namic behavior of the system in these accident conditions.
Process variables like H2, H2O, CO, and CO2 concen-
trations, or containment pressure and temperature, leave
the explosion with values different from those they had
when the combustion was initiated. The magnitude of
the change is mainly driven by a parameter called “burn
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completeness,” which can be expressed either through a
correlation on the gas concentrations16 or via probability
density.17 This implies that these instantaneous changes
can be driven by random parameters.

In order to model this aspect, we present in this sec-
tion a slightly revised approach of an idea propounded in
Ref. 18 in order to model random loads within the frame
of dynamic reliability. This original work was targeted
on structural reliability, which can also be of interest in
level-2 PSA problems, but the potential applicability of
the model is broader.

Random loads, due to external events, earthquakes
etc., are likely to cause random changes of physical pa-
rameters of the system, leading possibly to “instanta-
neous” random changes of some process variables values.
The suggested extension models the effect of the random
loads during the transitions induced by external events
in the following way. A vectorSzof random variables~the
burn completeness in our combustion example! is intro-
duced to describe the impact of the shock. VectorSz is
distributed according to the pdffji ~ Sz! associated with
the transition from dynamicsj to dynamicsi . The pro-
cess variables are affected by this shock as follows:

Sx1 5 Tyji ~ Sx2, Sz! , ~13!

where Sx1 and Sx2 are the values of the process variables
after and before the transition, respectively.As this change
is associated with the branching event, the semi-Markov
assumption must be adopted to model it. Introducing the
impact of the random shock in Eq.~11!, we obtain

w~ Sx, i, t ! 5 (
jÞi
Ed Sx*Ed Szd~ Sx 2 Tyji ~ Sx*, Sz!!fji ~ Sz!

3 E
o

t

dtEd Su qji ~t 2 t; Su!

3 d~ Sx* 2 Sgj ~t 2 t, Su!!

3 @p~ Su, j,t!d~t! 1 w~ Su, j,t!# . ~14!

Equation~14! embodies the following situation. The sys-
tem entered configurationj at timet with process vari-
ables Su. A time delayt 2 t later, a transition between
dynamicsj and i occurs, while the continuous variables
have reached a valueSx* . As a result of a shock situation
associated with this transition, and characterized by shock
variables Sz, an instantaneous change in the value of the
process variables takes place, fromSx* to Sx 5 Tyji ~ Sx*, Sz!.
In the absence of a shock, the value of vectorSz is irrel-
evant, and Sx 5 Tyji ~ Sx*, Sz! 5 Sx* . Straightforward integra-
tions over Sz and Sx* reduce Eq.~14! to Eq.~11!.

Reference 18 suggests that the shock variables could
also influence the transition probabilities. However, the
same vectorSz cannot affect the sojourn time in configu-
ration j and at the same time be distributed according to
a pdf depending on the peculiar transition following the

system stay inj, as propounded in Ref. 18. Instead, we
can assume that the shock variables are system param-
eters whose values are likely to change randomly after a
transition. Therefore, ifw~ Sx, i, t, Sz! is the ingoing density
into i at t with process variablesSx and shock variablesSz,
and if fij ~ Sz6 Sz* ! is the pdf of the shock variables result-
ing from the transitioni r j, given the latter was entered
with Sz* , we can write

w~ Sx, i, t, Sz! 5 (
jÞi
Ed Sx*Ed Sz* d~ Sx 2 Tyji ~ Sx*, Sz!!fji ~ Sz6 Sz* !

3 E
o

t

dtEd Su qji ~t 2 t; Su, Sz* !

3 d~ Sx* 2 Sgj ~t 2 t, Su!!

3 @p~ Su, j ;t!d~t!d~ Sz* 2 Szo!

1 w~ Su, j,t, Sz* !# , ~15!

where a dependence onSz has been added in the proba-
bility per unit timeqji and Szo denotes the initial value of
the shock parameters. We have further assumed that the
instantaneous change of the process variables after the
transition was driven by the shock variables resulting
from this transition. This hypothesis is then coherent with
the treatment given in Eq.~14!.

The addition of the random loads in the dynamic
reliability framework mainly appears as averaging the
general semi-Markovian equation of the ingoing density
over the shock variables distribution. Therefore, to keep
the new developments of Secs. XXX more readable, we
will skip this potential dependence onSz in the sequel of
the paper.

III.B. Stimulus Activation and Delays
in the Branching Process

III.B.1. The Concept of Stimulus

In Sec. II, we summarized, and somewhat reformal-
ized, the fundamental equations of the TPD when the
change in the dynamic behavior of the plant occurs with
no delay after a solicitation causing a branching in the
continuous event tree. In actuality, time delays must of-
ten be considered between the triggering of a branching
event and its realization. We give the general name of
“stimulus” to any situation that can initiate a branching
process. Examples of stimuli are, among others,

• the entry in a plant configuration for the possible
failure in operation of a subsystem

• the crossing of a setpoint, actuating a control0
protection device, or forcing the operator to
intervene

• the entry of the system in a given region of the
process variable space, corresponding for instance
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to the satisfaction of ignition conditions for a gas
explosion

• the fulfillment of a necessary condition for the
occurrence of an event

• the loss of safety margins to necessary conditions
for damage as, for instance, conditions that de-
grade safety barriers.

As observed from this nonexhaustive list, stimuli can
present very different natures, including phenomenolog-
ical events, as well as control-driven actions. Once a
stimulus is activated, a time delay must elapse before the
actual occurrence of the branching event. Referring to
the examples of stimuli given above, these delays can be

• the time to failure of a piece of equipment from
the last branching time

• the time to actuation of a protection device, e.g.,
due to mechanical inertia, or the diagnostic time
taken by an operator before performing an action

• the delay before the appearance of a spark trigger-
ing the explosion once the ignition criteria are
satisfied

• the time elapsed between the occurrence of a con-
ditioning event and that of the conditioned event

• a grace delay before the actual damage occurs and
during which other events like protection actions
can be expected.

These times are usually random.
Random delays of action are accounted for in Ref. 4

to model for instance the operator’s behavior after the
system has crossed a setpoint. The Ref. 4 treatment is
based on the assumption that the dispersion of these de-
lays about their mean value was small. But, the main
hypothesis consists of performing this uncertainty analy-
sis on the paths of the continuous event tree that had
been identified with no delays~or no variability in the
delays! in the transitions. This amounts to limiting
the competition between events to the comparison of the
times necessary to reach the different setpoints respec-
tively associated with them, no matter how long the de-
lays are.

When considering the branching time as the sum of
a time to stimulus activation and a delay, competing events
are dealt with in a more satisfactory fashion. Indeed,
from a given point in the event tree development, the
next branching is associated with the event displaying
the smallest total time until its occurrence, i.e., the time
to the activation of the corresponding stimulus plus the
subsequent delay. In the peculiar case of two setpoint
transitions in competition, the first setpoint to be crossed
could be followed by a rather long delay, enabling the
plant’s representative trajectory in the process variables
space to reach the second threshold, associated with a
possibly much shorter delay, which could elapse before

the actual occurrence of the first event. This shows how
this “stimulus activation1 time delay” concept might
affect the ordering of events in the tree. Dealing with this
kind of competing effect continues as a major source of
inspiration for dynamic reliability developments.

III.B.2. Semi-Markov Treatment of
Stimulus-Driven Branchings

Let F be the set of stimuli to be accounted for in the
plant evolution following the occurrence of a given ini-
tiating event. We denote byfiF~t; Su! the pdf of activating
the particular stimulusF [ F after a time intervalt spent
in configurationi , which was entered at pointSu. This
dependence ont and Su is quite general, and setpoints or
regions in the process variables space that are associated
with stimuli can be modeled via a dependence onSgi ~t, Su!.
We also definehij

F~t; Su!, probability per unit time of hav-
ing a time delayt before a transition between dynamicsi
and j , if stimulus F was activated at pointSu, and
hi

F~t; Su! 5 (jÞi hij
F~t; Su!, pdf of the delay before leaving

dynamicsi in the same conditions.
A transition between plant configurationsi and j,

through the event induced by stimulusF, will occur at a
time betweentF and tF 1 dtF after enteringi with a
probability

dtFE
o

tF

fiF~t; Su!hij
F~tF 2 t; Sgi ~t, Su!! dt

if no stimulus other thanF comes into play~see Fig. 1!.
When releasing the latter restriction, we can define a
time tG associated with the occurrence of the event in-
duced by each stimulusG [ F. Then, the event associ-
ated withF will cause the branching fromi to j in a time
intervaldt aboutt if tF lies in @t, t 1 dt# and if tG . tF for
all stimuli G Þ F and all transitions out ofi . The proba-
bility qij

F~t; Su! dt of this situation is then such that

qij
F~t; Su! 5 E

o

t

fiF~t; Su!hij
F~t 2 t; Sgi ~t, Su!! dt

3 )
GÞF

F12E
o

t

dt 'E
o

t '

dt fiG~t; Su!

3 hi
G~t ' 2 t; Sgi ~t, Su!!G . ~16!

To illustrate these concepts, let us consider some
particular cases:

1. We assume that all stimuli correspond to set-
points and that the distributions of the delays are inde-
pendent of the process variables. Letti

G~ Su! be the time
necessary to reach the setpoint associated with stimulus
G in dynamicsi and starting from Su. We can then write

fiG~t; Su! 5 d~t 2 ti
G~ Su!! ;G ~17!
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and thus

qij
F~t; Su! 5 hij

F~t 2 ti
F~ Su!!

3 )
GÞF

@12 Hi
G~t 2 ti

G~ Su!!{u~t 2 ti
G~ Su!!# ,

~18!

whereHi
G~t ! is the cumulative density function~cdf! of

the delay associated with stimulusG in dynamicsi and
u~t ! is the Heaviside stepfunction. Expression~18! high-
lights the competition between the delays following the
activation of the stimuli after deterministic time inter-
vals. TheF transition betweeni and j will take place in
@t, t 1 dt# only if the delays associated with all the tran-
sitions corresponding to the other stimuli lead to larger
sojourn times in configurationi .

2. A second example that can be envisioned is that
of a protection device whose operation is solicited when
a setpoint is crossed~stimulus F! and that presents a
probabilitypf to fail on demand at this time. This situa-
tion can be modeled by assuming that a fractionpf of the
stimulus activation probability is rejected at a timetAD,
which is an upper bound of the accident duration on
which the PSA has to be performed. Equation~17! then
becomes

fiF~t; Su! 5 ~12 pf !{d~t 2 ti
F~ Su!! 1 pf d~t 2 tAD! . ~19!

By doing so, pdffiF~t; Su! stays normalized, but the stim-
ulus activation can occur only with a probability 12 pf

within the “mission time” of the PSA.

3. Assume finally that experiments related to the
occurrence of a phenomena show it is conditioned by
the activation of a stimulusF and provide activation prob-
abilities qMj

F in regionsMj , j 5 1 . . .n, partitioning the
phase-space. Or, consider an operator having a probabil-
ity qMj

F to diagnose a problemF when the system lies
within regionMj , the delay corresponding to his0her time
to action after diagnosis. How can the pdf of the activa-
tion time in dynamicsi be built in such cases? Lettij

F~ Su!
be the time required, while evolving in dynamicsi from

Su, to reach the border of thej ’th regionMj visited by the
system trajectory in the process variables space, given
these regions are ranked in the order they are entered
along the process variables evolution in dynamicsi . If
we assume that stimulusF is instantaneously activated
when entering a region, we can write

fiF~t; Su! 5 qM1

F d~t 2 ti1
F~ Su!! 1 ~12 qM1

F !qM2

F d~t 2 ti 2
F ~ Su!!

1 ~12 qM1

F !~12 qM2

F !qM3

F d~t 2 ti 3
F ~ Su!!

1 {{{ 1 )
j51

n

~12 qMj

F !{d~t 2 tAD! ~20!

with ti, j11
F ~ Su! . tij

F~ Su!, ;j. One can observe that this
expression is a generalization of the two previous cases
given in Eqs.~17! and ~19!. A more realistic modeling
could consist in taking a uniform distribution within each
region. SettingDtij

F~ Su! 5 ti, j11
F ~ Su! 2 tij

F~ Su!, we have

fiF~t; Su! 5
qM1

F

Dti1
F~ Su!

u~t 2 ti1
F~ Su!!{u~ti 2

F ~ Su! 2 t !

1
~12 qM1

F !qM2

F

Dti 2
F ~ Su!

u~t 2 ti 2
F ~ Su!!u~ti 3

F ~ Su! 2 t !

1 {{{ 1 )
j51

n

~12 qMj

F !{d~t 2 tAD! . ~21!

The important particular case of stimuli activated at
setpoints and within given regions of phase-space is the
object of our companion paper.11

Accounting for Eq.~16!, Eq. ~11! for the ingoing
density in configurationi then becomes

w~ Sx, i, t !

5 (
F

(
jÞi
E

o

t

dtEd Su @p~ Su, j,t!d~t! 1 w~ Su, j,t!#

3 d~ Sx 2 Sgj ~t 2 t, Su!!qji
F~t 2 t; Su! , ~22!

Fig. 1. Two-phase occurrence of theF-induced event.
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while Eq.~10! is modified in the following way:

p~ Sx, i, t ! 5 E
o

t

dtEd Su @p~ Su, i,t!d~t! 1 w~ Su, i,t!#

3 d~ Sx 2 Sgi ~t 2 t, Su!!{~12 Pi ~t 2 t; Su!! ,

~23!

where

Pi ~t; Su! [ (
F
E

o

t

pi
F~t; Su! dt

[ (
F

(
jÞi
E

o

t

qij
F~t; Su! dt . ~24!

Though the mathematical formulation of Eqs. XXX
is somewhat heavy, they are nothing but a direct tran-
scription of the probability of the different random pro-
cesses in competition.

Some simplification in the interpretation of these
developments can be obtained if the probability per unit
timeqji

F can be factorized, as mentioned in Sec. II.B, and
the outgoing density can consequently be used. The cor-
responding evolution equations are given in Appendix C.

III.B.3. Remarks

The preceding developments have allowed us to ac-
count for the delay following the activation of a stimulus
before the actual occurrence of the event’s inducing a
change of dynamics. This transition time appears thus as
the sum of two random times, hence, the convolution
products introduced from Eq.~16! on. The competition
between events is also embodied by Eq.~16!, where the
process corresponding to the shortest total transition time
~activation1 delay! is the one responsible for driving
the system toward a new dynamic evolution. Let us how-
ever mention that the semi-Markovian framework that
has been used induces the following consequence: The
entry in a new dynamics is a regeneration point for the
stochastic process describing the system evolution. In
practice, this means that all stimuli that are activated at
the time of the transition are disactivated once the new
configuration is entered. Releasing this limitation is dis-
cussed in Sec. IV.

One could also wonder if a stochastic modeling for
the activation time of the stimuli is mandatory. In many
practical situations indeed, this time is deterministic, be
it the entry in a new dynamics or the crossing of a set-
point while following a given dynamic trajectory~see
examples in Sec. III.B.2!. Even if there is some possible
randomness in the position of a setpoint, this could be
accounted for in the distribution of the corresponding
delay. Though the pdf ’sfFi will often reduce to a Dirac
peak, thereby bringing some simplifications in the ex-
pressions above@see, e.g., Eq.~18!# , we chose to keep
the developments as general as possible in the theoreti-

cal perspective of this paper. A positive side effect of this
choice is to better enlighten the competing process among
all events likely to cause the dynamics to change@see
Eq. ~16!# . Another advantage of keeping a fully proba-
bilistic description of the branching process appears in a
companion paper11: A partition in cells of the region of
interest in the process variables space leads to a proba-
bilistic interpretation of the proportion of dynamic tra-
jectories going from one cell to another, even when
trajectories correspond to Dirac peaks.

To conclude these remarks, let us notice that all stim-
uli are likely to be activated in any dynamics in our
present framework. In actuality, some stimuli could be
specific to a given set of configurations. If stimulusF
cannot be activated in dynamicsi , this case can simply
be accounted for by considering a pdffiF~t; Su! 5
d~t 2 tAD!, wheretAD is an upper bound of the accident
duration for the transient under study.

IV. INCOMPLETE DISACTIVATION OF THE
STIMULI AFTER A TRANSITION

IV.A. Stating the Problem

As mentioned before, the main consequence of the
semi-Markovian framework we have adopted up to now
is the “regeneration”~i.e., disactivation! of all stimuli as
soon as a new dynamics is followed.

This assumption does not always hold. Indeed, some
events are due to occur some time after the activation of
the corresponding stimulus no matter which state the
system lies in. Consider for instance the following situ-
ation: A setpoint crossing has triggered the stimulus for
the intervention of a safeguard system, but an unrelated
hardware failure, not affecting the safeguard itself, pro-
vokes a change of configuration before the end of the
delay associated with the protection device actuation.
The dynamics is clearly modified, but without prevent-
ing the protection action from taking place soon after.
The corresponding activated stimulus was therefore un-
affected by the hardware failure. The change in dynam-
ics between the activation of the stimulus and the actual
occurrence of the event is only likely to have altered the
distribution of the time delay. Other practical examples
of stimuli keeping activated after a change of dynamics
are given in the illustrative application treated in Sec. V.

This means that the semi-Markovian restriction in
our previous developments has to be left aside in order
to include such circumstances in the theory. Let us then
try to formalize the problem. LetS~] F! be the subset of
all stimuli that have been activated at the time the cur-
rent dynamics is left because of the occurrence of the
event induced by stimulusF. The latter is of course dis-
activated as well as some of~but not necessarily all! the
stimuli belonging toS0$F% . In the new dynamics, the
stimuli that were disactivated could be treated as before
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since they were “regenerated” by the transition. As for
the stimuli that have stayed activated, and that form a
subsetA of S, the distribution of the remaining time
delay before the occurrence of the event they condition
should now be considered. This implies that some infor-
mation on the history of the system since their activation
should be kept in memory. We then see that the problem
becomes non-Markovian as soon as at least one of the
stimuli in S0$F % keeps activated after the change in
dynamics.

IV.B. Conditional Density
of the Residual Delay

Let us first establish the conditional pdfDhi
F of the

delay following the activation of stimulusF, given that
the latter occurred before the entry in configurationi and
givenF remained activated after the transition toi .

Let t be the time at which configurationi was en-
tered by the system, with process variablesSu, andtF , t
the time at which stimulusF [ A was activated.

We will consider different situations corresponding
to different types of delays that can be envisioned. We
will first concentrate on the simple particular case where
the delay density depends only on time. Let us then first
build the unconditional pdfhF of the delay associated
with a stimulusF, activated attF in configurationj, with
a transition to configurationi occurring at timet. We
have

hF~t 2 tF ; j r i,t!

5 5
hj

F~t 2 tF ! if tF # t # t

~12 Hj
F~t 2 tF !!{

hi
F~t 2 tF !

12 Hi
F~t 2 tF !

if t $ t .

~25!

The second line of Eq.~25! is deduced from the
following reasoning. The delay will be greater thant 2tF

if it is not elapsed in configurationj, i.e., with a proba-
bility 1 2 Hj

F~t 2 tF !; the pdf of the delay in dynamics
i has then to be used, conditional to the fact that the
delay is greater thant 2 tF . Writing this expression is
possible if one assumes that the transition fromj to i
does not modify the reference time for the delay, i.e.,

that the delay elapsing is considered fromtF in both
dynamicsj and i .

Considering now the conditional pdfDhi
F of the resid-

ual delay associated with stimulusF that remained acti-
vated after the transition to dynamicsi , we have, setting
DtF 5 t 2 tF ,

Dhi
F~Dt 6DtF ! 5

hF~t 2 tF ; j r i,t!

12 Hj
F~DtF !

5
hi

F~Dt 1 DtF !

12 Hi
F~max~0,DtF !!

~26!

if Dt 5 t 2 t is the time that has elapsed since the entry
of the system in configurationi ~see Fig. 2!. Indeed, the
actual delay before the occurrence of the event triggered
by the activation ofF is Dt 1 DtF , but the corresponding
distribution must be truncated up toDtF ; i.e., it must be
conditioned to the survival of the stimulus activation
during the time interval required to enter the new con-
figurationi . A general expression of the conditional den-
sity has been given in Eq.~26!, also valid for the case
wheret , tF , for which the original delay pdf is ob-
tained. As activations before and after the last change of
dynamics are to be mixed in our problem, this condi-
tional density function can thus be used in both cases. It
will always be considered in the sequel of this section.

However, before considering more complicated de-
pendences of the delay pdf, we can shortly discuss the
hypothesis of time continuity of the delay, before and
after the change of dynamics, that underlines the devel-
opments made so far. Indeed, assuming that the delay
keeps elapsing in the same way after the change of dy-
namics, while the pdf is modified, could be questionable.

An even stronger assumption would be the renewal
of the delay elapsing; i.e., the reference time for the de-
lay after the transition is the transition time itself. In
such a case, there is no need anymore to envision a non-
Markov treatment of the problem, as any stimulus that
remains activated after a transition can be considered
disactivated, and immediately reactivated after the
transition.

Another approach would then consist of assuming
that the delay will elapse in dynamicsi , based on the
hypothesis that the probability of having the delay elapsed

Fig. 2. Time line for the residual delay after a transition.
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must be continuous before and after the transition. In
other words, the reference time after the transition should
no longer betF , but ItF , in such a way thatHj

F~t 2 tF ! 5
Hi

F~t 2 ItF !. This amounts to assuming that the total
probability of a delay longer than the time intervalt 2 tF

up to the transition is unaffected by this transition.
If the delay pdf is unaltered by the transition, we

will have of coursetF 5 ItF . In general terms, however,
we will have, instead of Eq.~25!,

hF~t 2 tF ; j r i,t!

5 5
hj

F~t 2 tF ! if tF # t # t

~12 Hj
F~t 2 tF !!{

hi
F~t 2 ItF !

12 Hi
F~t 2 ItF !

5 hi
F~t 2 ItF ! if t $ t

~27!

with

ItF 5 t 2 ~Hi
F!21~Hj

F~t 2 tF !! ~28!

with ~Hi
F!21 denoting the inverse of functionHi

F~t !.
We will however keep the assumption of the time

continuity in the sequel of this section.
A second situation of interest corresponds to a delay

density displaying a time dependence either along a dy-
namic trajectory or within a given region of the process
variables space, i.e., withhi

F~t; Su!. This could for in-
stance be the case in a level-2 accident, when an explo-
sion takes place if the zone where ignition criteria are
satisfied is entered and if a delay associated with the
occurrence of a spark has to be elapsed before leaving
the ignition zone. Then,

Dhi
F~Dt; Su6DtF ! 5

hi
F~Dt 1 DtF ; Sui

F!

12 Hi
F~max~0,DtF !; Sui

F!
, ~29!

where Sui
F is such that Su 5 Sgi ~DtF , Sui

F!. For DtF . 0,
vector Sui

F is thus not the value of the process variables at
the time stimulusF was activated since this occurred in
a configuration different fromi , associated with a dy-
namic evolution that is not Sgi . Yet, Sui

F appears as a
virtual initial condition for the dynamic evolution in con-
figuration i , with respect totF , and leads to the true
trajectory aftert.

In a third possible case, the triggered event has a
nonzero probability of taking place in a given region of
the process variables space, and the delay expresses only
the time required to reach a given point in this zone. In
order to obtain simpler mathematical expressions, let us
assume that the event associated with stimulusF occurs
for a value of the process variablep within the range
@ pmin, pmax# , with a probability densityf ~ p!. The stimu-
lus was activated when crossing the setpoint at the lower
endpmin of the support off ~ p!. The distribution of the
delay in statei relates tof ~ p! according to

hi
F~Dt; Su! 5 f ~gip~Dt, Su!!{6qip~ Sgi ~Dt, Su!!6 ~30!

as long as thep componentgip~t, Su! of the system trajec-
tory is monotonically increasing. In the latter expres-
sion, qip is the time derivative of thep component of
vector Sx in dynamicsi . If we now assume that statei was
entered after a transition that does not disactivate stim-
ulus F, and if the monotonic behavior ofp is still ob-
served after the transition, we have for the conditional
density of the delay

Dhi
F~Dt; Su! 5

f ~gip~Dt, Su!!{6qip~ Sgi ~Dt, Su!!6

12 F~gip~0, Su!!
, ~31!

whereF~ p! is the cdf associated withf ~ p! andgip~0, Su!
is the value ofp at the transition time. Note that this time
the conditional pdf is independent oftF since the event
induced byF occurs at a given position in the process
variables space and not explicitly at a given time. In this
case, we can keep the semi-Markov treatment developed
in Sec. IV.A provided some adaptations are brought. The
stimuli that remain activated after a transition are as-
sumed to be disactivated at the transition time and im-
mediately reactivated after the transition@therefore with
a corresponding pdffiF~t; Su! 5 d~t ! in the new statei # ,
with the distribution of the delay being given by Eq.~31!
in the new configuration.

When the assumption on the monotonic evolution of
gip~t, Su! is released, the situation becomes more compli-
cated, as Eq.~30! is no longer valid as such. The treat-
ment that then needs to be done is similar to that which
was performed in Ref. 19 for the determination of a mean
estimator of the failure probability in the Monte Carlo
simulation of a dynamic reliability problem with distrib-
uted safety borders. Assume thatgip~t, Su! is increasing
up to a maximump* [ @ pmin, pmax# . As soon as the
value ofp starts decreasing afterp* , the probability of
the event occurrence vanishes if we suppose it is associ-
ated with a first passage at a given value ofp. This ob-
servation is valid even if no change of dynamics took
place. The system has then survived this first entry in the
support off ~ p! on@ pmin, p* # with a probability 12F~ p* !.
If the system reenters the support off ~ p! later on, it is
impossible for the event to actually occur belowp* , again
with the assumption that the event occurrence is associ-
ated with a first crossing of a value ofp. Above this
value p* , the event can then take place at a level in
@ p, p 1 dp# with a probability f ~ p! dp0~1 2 F~ p* !!. A
simple way of modeling this case consists of the follow-
ing steps:

• disactivation of the stimulusF when the maxi-
mump* is passed~see Sec. IV.E!

• reactivation ofF whenp* ~and notpmin!! is reached
again

• use of a conditional distribution for the delay, sim-
ilar in form to Eq.~31!, but with respect to level
p* instead ofp.
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IV.C. Non-Markov Treatment of
Stimulus-Driven Branchings

IV.C.1. Probability of a Next Event

The semi-Markov framework in Sec. III, and its in-
herent property of disactivating all activated stimuli each
time the dynamics changes, allowed us to model the sys-
tem evolution while referring only to the entry in new
configurations. Once activated stimuli can survive the
transitions, one could think of generalizing the “disacti-
vation1 instantaneous reactivation” trick that we sug-
gested at the end of the last paragraph: For all stimuli
belonging toA, the density of the activation time in the
new configuration would reduce to a Dirac peak, while
the delay would be distributed according to one of the
conditional pdf ’s presented in Sec. IV.B; these results
could then be introduced into Eq.~16!, and the semi-
Markov approach would be formally conserved. In do-
ing this, however, we could not keep track of the activation
times of stimuli that would be activatedafter entering
the present configuration and that could remain acti-
vated after the next change of dynamics. We therefore
have to consider separately two types of events, which
are to be handled at the same level, since none of them
can any longer regenerate the system:

• the activation of a new stimulusF [ F0A, before
the end of the delay associated with any of the
stimuli G [ A ~case 1!. After its activation,F is
added toA.

• the occurrence of a new stimulus-driven branch-
ing before any new activation, with the delay as-
sociated with a stimulus ofA being elapsed
~case 2!.

In the following,t* denotes the time of occurrence
of the last event, either a change of dynamics~t* 5 t,
time at which the last configuration change took place at
point Su! or a stimulus activation~t* . t!, which took
place at Su* ; AtA is a shortcut notation for the times of
activationtG of all G [ A. SubsetA has to be enlarged
each time case 1 is met and updated in case 2. It must be
highlighted that because of case-1 events,A will contain
stimuli that were activated before entering the current
configuration and stimuli that were activated afterward.
We will however keep the tilded notations for the pdf ’s
of the delays in both cases since in Eqs.~26!, ~29!, and
~31!, the denominator must not be considered when
tF . t.

In case 1, the probability thatF will be the next
stimulus to be activated, in configurationi and in
@t, t 1 dt# , before any other event occurs, given the sub-
setA of stimuli having remained activated after entering
i , is written

pi
F*~t;t*,t, Su*, AtA ,A! dt

5
fiF~t 2 t; Su! dt

12 Fi
F~t* 2 t; Su!

{ )
HÓA
HÞF

12 Fi
H~t 2 t; Su!

12 Fi
H~t* 2 t; Su!

3 )
G[A

12 EHi
G~t 2 t; Su6DtG !

12 EHi
G~t* 2 t; Su6DtG !

, ~32!

where Su is such that Su* 5 Sgi ~t* 2 t, Su!. Note that we
have willingly kept Su* in the arguments ofpi

F* , even
though Su is the only value of the process variables ap-
pearing on the right side of Eq.~32!. The reason of this
notation appears more clearly in our companion paper.11

All activation and delay elapsing processes are to be
made conditional to the occurrence of the last event at
t* , such as in system engineering for non-Markovian
components.20–22The interpretation of Eq.~32! is straight-
forward: It is the probability that stimulusF is activated
after a timet 2 t in dynamicsi , conditionally tot . t* ,
while no other stimulus is activated and while no event
induced by an already activated stimulus takes place on
@t*, t # . We assume that the updating of setA following
the activation ofF automatically implies that of vector
AtA .

As for case 2, we consider the probability that the
event triggered by the activated stimulusF will occur in
@t, t 1 dt# and bring the system in dynamicsj, under the
same conditions as above:

pij
F~t;t*,t, Su*, AtA ,A! dt

5
Dhij
F~t 2 t; Su6DtF ! dt

12 EHi
F~t* 2 t; Su6DtF !

3 )
G[A
GÞF

12 EHi
G~t 2 t; Su6DtG !

12 EHi
G~t* 2 t; Su6DtG !

3 )
HÓA

12 Fi
H~t 2 t; Su!

12 Fi
H~t* 2 t; Su!

. ~33!

The reasoning leading to Eq.~33! is similar to the
previous one. Note however that the probability per unit
time Dhij

F~t*2t; Su6DtF ! is conditioned by 12 EHi
F~t*2t;

Su6DtF !, i.e., by the complement to the whole cdf. Indeed,
the transition to dynamicsj in @t, t 1 dt# is chosen, given
no change of dynamics, whatever the next configuration,
and was caused by stimulusF beforet* . Expression~33!
must be complemented by a logical operatordij

F~ArA ' !
giving the set of stimuli that keep activated after the tran-
sition i r j due to theF-induced event. In most cases,A '
is a subset ofA.

IV.C.2. Evolution Equations

Most bricks necessary to adapt the previous evolu-
tion equation of the ingoing density@see Eq.~22!# are
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now available. Yet, we must still introduce two different
ingoing densities, associated with each type of next event
that might occur, respectively. Before doing this, we can
observe that the future evolution of the system is always
conditioned bynA 11 reference times ifnA is the size of
setA. These reference times are the activation times of
all stimuli belonging toA, and the entry time in the
current dynamics. When a new stimulus activation takes
place, additional time has to be kept in memory, with
all other reference times being unaltered. In case of a
change of dynamics, the entry time is of course updated,
while some activation times become irrelevant if the
corresponding stimuli do not remain activated after the
transition.

Let us then define the two ingoing densities that
describe the system evolution. We make them explicitly
dependent on the current timet, thought has to take the
value of one of the reference times mentioned above for
the densities not to vanish. We thus have

• win~ Sx, j, t, AtA ,A!, ingoing density in dynamicsj at
point Sx and timet, with a setA of stimuli activated
at AtA and remaining activated after entering the
new configurationj. If we do not consider the

possibility of additional activations caused by the
transition,t is an upper bound of all the compo-
nents of vector AtA .

• wF ~ Sx, j, t,t, AtA ,A!, density of activation of stimu-
lus F in dynamicsj, at ~ Sx, t ! for an entry inj at
time t, this activation resulting in a setA of acti-
vated stimuli~i.e., F [ A!. In this case,t is of
course theF component ofAtA, andt . tG, ;G [ A,
G Þ F. Therefore, mentioningt in addition to AtA
in the arguments ofwF is redundant, but it is kept
to make an explicit reference to the last activation
time. Yet, this activation density will have to be
used systematically with a Dirac peak
d~t 2 tF !, when variablest and tF are treated
independently.

Following the remark made on the inclusion oft 5 tF in
the arguments ofwF , it must be noticed that both densi-
ties have the same dimensions, for a given size of setA,
i.e., the inverse of the dimensions ofSx, timest2~#A11!.

If as beforet denotes the entry time in dynamicsi
and t* , the time at which the last event occurred, we
have

win~ Sx, j, t, AtA ,A!

5 (
A '.A

(
F[A '

(
iÞj

Ed SuE
o

t

dt*E
o

t*

dtE
o

t*

. . .E
o

t*

d AtA '0A d~ Sx 2 Sgi ~t 2 t*, Su!!pij
F~t;t*,t, Su, AtA ' ,A ' !

3 Fwin~ Su, i,t*, AtA ' ,A ' !d~t* 2 t! 1 (
G[A '

wG~ Su, i,t*,t, AtA ' ,A ' !d~t* 2 tG !Gdij
F~A ' r A! . ~34!

Indeed, the entry in configurationj is possible from any configurationi in which an already activated stimulusF can
induce the transitioni r j either if the previous event was the entry ini or if it was any of the stimulus activations that
took place ini . Vector AtA is updated by conserving the components ofAtA ' corresponding to the stimuli belonging to
A. Since the actual activation times of the stimuli belonging toA '0A do not need to be accounted for after the change
of dynamics, the contributions towin~ Sx, j, t, AtA ,A! have to be summed up on all possible values of the components of
AtA '0A , hence this multiple integral. We then see the dependence of the dimensions of the ingoing density on the size

of setA.
As for the density of activation ofF, we can write

wF ~ Sx, j, t,t, AtA1$F% ,A 1 $F%!

5 Ed SuE
t

t

dt* d~ Sx 2 Sgj ~t 2 t*, Su!!pj
F*~t;t*,t, Su, AtA ,A!

3 F@p~ Su, j,t!d~t!dA,B 1 win~ Su, j,t*, AtA ,A!#d~t* 2 t! 1 (
G[A

wG~ Su, j,t*,t, AtA ,A!d~t* 2 tG !G , ~35!

whereB is the empty set. The second and third terms in the main brackets on the right side of Eq.~35! lead to an
interpretation similar to what has been done for Eq.~34!. One should notice however that an activation is always the
first event to take place after the transient initiation if we assume that no stimulus is initially activated, hence the first
term in these brackets. VectorAtA is updated by adding to it the activation timetF [ t.
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The probability density in statei then is written
p~ Sx, i, t;A!

5 Ed Su*E
o

t

dt*E
o

t*

dtE
o

t*

. . .E
o

t*

d AtA d~ Sx 2 Sgi ~t 2 t*, Su* !!~12 Pi ~t;t*,t, Su*, AtA ,A!!

3 F@p~ Su*, j,t!d~t!dA,B 1 win~ Su*, i,t*, AtA ,A!#d~t* 2 t! 1 (
F[A

wF ~ Su*, i,t*,t, AtA ,A!d~t* 2 tF !G , ~36!

wherePi ~t;t*,t, Su*, AtA ,A! is the probability that the next
event in dynamicsi will occur beforet, provided the last
event took place at~t*, Su* !, dynamicsi was entered att,
and the stimuli belonging toA were activated atAtA . We
have

12 Pi ~t;t*,t, Su*, AtA ,A!

5 )
G[A

12 EHi
G~t 2 t; Su6DtG !

12 EHi
G~t* 2 t; Su6DtG !

3 )
HÓA

12 Fi
H~t 2 t; Su!

12 Fi
H~t* 2 t; Su!

, ~37!

where again Su* 5 Sgi ~t* 2 t, Su!.

IV.D. Disactivation Rules and
Random Shocks

Section III.A presented how to model instantaneous
changes in the value of process variables that can take
place at a transition time between two dynamics. As men-
tioned in Sec. III.A, the methodology roughly amounts
to averaging the evolution equations of the problem on
the distribution of random shock variables determining
the magnitude of the jump in the process variables value.
For this reason, coupling this feature with the stimulus-
driven branching process is direct.

However, this instantaneous modification of the pro-
cess variables value is likely to bring the system on the
other side of a setpoint corresponding to a stimulus or
within a region where a stimulus can be activated. The
system could also exit a region where a stimulus remains
activated~see Sec. IV.E!. The occurrence of these situa-
tions depends on the value of the shock variables asso-
ciated with the jump.

In the semi-Markov model, some stimuli can then be
directly activated when entering the new dynamics, de-
pending on the magnitude of the random jump under-
gone by the continuous variables. In the non-Markov
case, the logical functionsdij

F~A r A ' ! are to be made
dependent on the value of the process variables before
and after the jump, or alternatively on the shock vari-
ables and the process variables before this jump.

IV.E. Disactivation of a Stimulus Without
Change of Dynamics

Until now, we have assumed that activated stimuli
could only be disactivated when a change of dynamics

took place. This situation is forced to occur in the semi-
Markov framework, while disactivation rules are to be
introduced in the non-Markov treatment to define which
stimuli keep activated after a transition between system
states.

However, stimuli are likely to be disactivated once
the process variables cross a setpoint or enter a given
region of phase-space, even though the system keeps
evolving in the same dynamics. Such a circumstance can
be encountered when modeling combustion processes in
PSA2 analyses. The combustion stimulus is activated
when entering a flammability region, but no ignition will
take place if the delay following activation is larger than
the time taken by the system to exit the flammability
zone.

Having now developed the non-Markov theory, we
can propound a way of modeling the disactivation of
stimulusF. Let OF be a fictitious stimulus associated with
F and assume the pdf of activation ofOF is identical to
that of disactivation ofF ~note that this last pdf cannot
be handled in our theory!. In the combustion example
mentioned above,OF will be activated when the system
goes out of the flammability region. A nil delay is asso-
ciated with the OF event that we still need to define. Ifi is
the current dynamics, this event is a transition fromi to
itself. In other words, the activation ofOF will be instan-
taneously followed by this transition fromi to i .

In the non-Markov treatment, we can associate dis-
activation rules to this transition. In this case,F and OF
will be disactivated, while all other stimuli that belonged
to the setA before the OF-induced transition remain acti-
vated afterward.

IV.F. Consistency of the Stimulus-Driven
Approach

Though the final expressions in both forward and
backward cases are rather complicated, they are ob-
tained by introducing successively new modeling capa-
bilities in the classical TPD. In order to verify that the
well-known theory of dynamic reliability is a particular
case of these new developments, we can trace back the
different assumptions brought into the theory and show
that we find again the classical TPD. This can be done
for instance in the forward case, where the use of two
ingoing densities makes it not obvious at first glance to
check the coherence of the stimulus-driven approach with
the C.K. equations.
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Let us first assume that no stimulus can remain activated after a change of dynamics. In mathematical words, we
havedij

F~A ' r A! 5 dA,B , for each transitioni r j induced by eachF. This means that the dependence ofwin in A
is irrelevant since it could only depend on the empty setB, and we will no longer mention it. In this case, Eq.~34!
becomes

win~ Sx, j, t ! 5 (
A

(
F[A

(
iÞj
Ed SuE

o

t

dt*E
o

t*

dtE
o

t*

. . .E
o

t*

d AtA d~ Sx 2 Sgi ~t 2 t*, Su!!

3 pij
F~t;t*,t, Su, AtA ,A! F (

G[A
wG~ Su, i,t*,t, AtA ,A!d~t* 2 tG !G . ~38!

Indeed, the entry in a new dynamics asks first for at least one stimulus to be activated, and the contribution ofwin in
the integral of Eq.~34! disappears. As for Eq.~35!, it now takes the following form:

wF ~ Sx, j, t,t, AtA1$F% ,A 1 $F%!

5 dA,BEd Su @p~ Su, j,t!d~t! 1 win~ Su, j,t!#d~ Sx 2 Sgj ~t 2 t, Su!!pj
F*~t;t,t, Su, AtB ,B!

1 (
G[A

Ed SuE
t

t

dt* wG~ Su, j,t*,t, AtA ,A!d~t* 2 tG !d~ Sx 2 Sgj ~t 2 t*, Su!!pj
F*~t;t*,t, Su, AtA ,A! . ~39!

Introducing then Eq.~39! into Eq.~38!, we obtain

win~ Sx, j, t ! 5 (
F

(
iÞj
Ed SuE

o

t

dt @p~ Su, i,t!d~t! 1 win~ Su, i,t!#d~ Sx 2 Sgi ~t 2 t, Su!!

3 FE
t

t

dtF pi
F*~tF ;t,t, Su, AtB ,B!pij

F~t;tF ,t, Sgi ~tF 2 t, Su!,tF , $F%!G
1 (

A
(

F[A
(
iÞj

(
G[A

(
H[A0$G%

Ed SuE
o

t

dtGE
o

tG

dtE
t

tG

dsE
o

tG

. . .E
o

tG

d AtA0$G%

3 wH ~ Su, i,s,t, AtA0$G% ,A0$G%!d~s2 tH !d~ Sx 2 Sgi ~t 2 s, Su!!

3 pi
G*~tG;s,t, Su, AtA0$G% ,A0$G%!pij

F~t;tG,t, Sgi ~tG 2 s, Su!, AtA ,A! . ~40!

Using Eqs.~32! and~33!, we can evaluate the integral appearing in the first term of Eqs. XXX:

E
t

t

dt* pi
F*~t* ;t,t, Su, AtB ,B!pij

F~t;t*,t, Sgi ~t
* 2 t, Su!,tF , $F%!

5E
t

t

fiF~t* 2 t; Su!hij
F~t 2 t* ; Sgi ~t

* 2 t, Su!! dt* 3 )
GÞF

~12 Fi
G~t 2 t; Su!! . ~41!

The interpretation of Eq.~41! is straightforward as it gives the probability per unit time of a transition due to the
F-induced event between configurationsi andj after a timet 2 t if no stimulus other thanF is activated on this time
interval.

We can also see that the introduction of Eq.~39! into the last term of Eq.~40! leads again to an integral of the
activation density and to two terms: one is again associated with the initial probability density and the other one with
the ingoing density, but both correspond to the activation of two stimuli on the time interval considered, one of which
induces the event responsible for the change of configuration. The subsequent substitutions of the activation density
with Eq. ~39! give the development of Eq.~16! with respect to the number of stimuli activated at the time the first
delay is elapsed, i.e.,
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qij
F~t; Su! 5 E

o

t

fiF~t; Su!hij
F~t 2 t; Sgi ~t, Su!! dt )

GÞF
F12E

o

t

dt 'E
o

t '

dt fiG~t; Su!hi
G~t ' 2 t; Sgi ~t, Su!!G

5E
o

t

fiF~t; Su!hij
F~t 2 t; Sgi ~t, Su!! dt

3 F )
GÞF

~12 Fi
G~t; Su!! 1 (

GÞF
E

o

t

fiG~t; Su!~12 Hi
G~t 2 t; Sgi ~t, Su!!! dt

3 )
HÞF,G

~12 Fi
H~t; Su!! 1 (

GÞF
(

HÞF,G
. . .G . ~42!

Therefore Eq.~40! becomes equivalent to Eq.~22!.
We have thus shown that by suppressing the possibility
for stimuli to remain activated after a change of dynam-
ics, the forward non-Markov treatment of Sec. IV.C re-
duces to the forward semi-Markov theory given in
Sec. III.B.2. Further simplifying the problem, we can
now assume that there is no delay in the realization of an
event induced by the activation of a stimulus. This means
that

hij
F~t; Su! 5 [pF ~i r j 6 Su!{d~t ! . ~43!

Consequently, Eq.~16! takes the following form:

qij
F~t; Su! 5 fiF~t; Su! [pF ~i r j 6 Sgi ~t, Su!!

3 )
GÞF

@12 Fi
G~t; Su!# , ~44!

which highlights the simple competition between stimu-
lus activations. If the competing processes in Eq.~44!
now correspond to the different possible transitions out
of dynamicsi , we find the classical semi-Markov form
of the TPD. The stimulus-driven theoretical extensions
are thus consistent with the previous theory.

V. A TEST CASE

V.A. Problem Description

In order to illustrate the previous developments, we
consider in this section a basic model for the pressuriza-
tion of containment, which is caused by an inner com-
bustion whose durationtH is distributed according to the
pdf fH ~tH !. The corresponding~linear! pressure rise can
be mitigated by the opening of a relief valve, at a pres-
sure levelPv distributed according tofv~Pv !. The support
of this distribution is @Pvo, Pvmax# . This valve should
avoid a catastrophic rupture of the containment taking
place atP 5 Pc, wherePc has a pdffc~Pc! on the interval
@Pc

o, Pc
max# . Capital letters will be used as usual for the

corresponding cdf ’s.

The evolution equation for the containment pressure
is written

dP

dt
5 cu~tH 2 t ! 2 kvP{uv , ~45!

whereuv is a Boolean variable changing its value from
0 to 1 once levelPv has been crossed. Constantsc andkv
are such thatPvo , Pc

o , c0kv by assumption.
The possible dynamics of this system are thus

• dP0dt 5 c ~i 5 1! as long as the combustion goes
on before the valve opening or the rupture

• dP0dt 5 o ~i 5 2! when the pressurization comes
to an end before any other event

• dP0dt 5 c 2 kvP ~i 5 3! when the relief valve is
opened before the end of the combustion process

• dP0dt 5 2kvP ~i 5 4! when the pressurization is
stopped after the valve opening.

For convenience, we also define a fifth absorbing con-
figuration, corresponding to exceeding levelPc and where
the dynamics becomes indifferent since it is associated
with the containment rupture. Note that the latter situa-
tion can be reached only either from configuration 1 or
from configuration 3 provided the valve opening takes
place atPv , c0kv . Indeed, with this condition, the pres-
sure keeps increasing in dynamicsi 5 3 according to

t 2 tv 5
1

kv
lnS c 2 kvPv

c 2 kvP~t 6Pv !D , ~46!

wheretv is such thatP~tv 6Pv ! 5 Pv5 ctv in dynamics 1;
P~t 6Pv ! reaches an asymptotic limitP`5 c0kv .

V.B. Analytical Estimation of the Probability
of Catastrophic Rupture

Following the discussion on the possible accident
situations made hereabove, we can separate two cases
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and therefore writePrupt~t !, the probability of contain-
ment rupture as a function of time, as the sum of two
contributions, corresponding to the system evolving in
dynamics 1 and 3 when the rupture occurs, respectively:

Prupt~t ! 5 P1~t ! 1 P3~t ! . ~47!

V.B.1. Rupture Threshold Exceeded
in Dynamics 1 at Timet

This situation requires the simultaneous occurrence
of three events:

• The combustion time must be larger thant.

• The relief valve is not yet opened at the rupture
limit Pc.

• The time elapsed since the beginning of the tran-
sient must be large enough for the pressure to have
reachedPc in dynamics 1.

Averaging the probability of this intersection of events
over the distribution ofPc, we obtain forP1~t !

P1~t ! 5 E
Pc

o

Pc
max

fc~Pc!{S12 FHS Pc

c
DD

3 ~12 Fv~Pc!!{uSt 2
Pc

c
D dPc ~48!

since the pressure in dynamics 1 is linearly increasing,
starting fromP~o! 5 0.

V.B.2. Rupture Threshold Exceeded
in Dynamics 3 at Timet

The valve opening, causing the transition in this state
from configuration 1, must take place at a pressure level
Pv, c0kv , in order to keep a positive pressure derivative
in dynamics 3.

The combustion duration must again be larger than
the timetc~Pc6Pv ! to reach the rupture pressurePc, given
Pv . From Eq.~46!, tH must satisfy

tH . tc~Pc6Pv ! 5 tv1
1

kv
lnS c 2 kvPv

c 2 kvPc
D

5
Pv
c

1
1

kv
lnS c 2 kvPv

c 2 kvPc
D . ~49!

Rupture in dynamics 3 also implies thatPv , Pc.
To state more clearly the condition on the minimum

time required to attain the undesired event, we split the
cases wherePv # Pc

o andPv $ Pc
o. Then,

P3~t ! 5 E
Pv

o

Pc
o

dPv fv~Pv !{u~P~t 6Pv ! 2 Pc
o!

3 E
Pc

o

P~t 6Pv !

dPc fc~Pc!{~12 FH ~tc~Pc6Pv !!!

1 E
Pc

o

c0kv

dPv fv~Pv !{uSt 2
Pv
c
D

3 E
Pv

P~t 6Pv !

dPc fc~Pc!{~12 FH ~tc~Pc6Pv !!!

5E
Pv

o

Pc
o

dPv fv~Pv !{u~P~t 6Pv ! 2 Pc
o!

3 E
Pc

o

P~t 6Pv !

dPc fc~Pc!{~12 FH ~tc~Pc6Pv !!!

1 uSt 2
Pc

o

c
DE

Pc
o

min~c0kv ,ct!

dPv fv~Pv !

3 E
Pv

P~t 6Pv !

dPc fc~Pc!{~12 FH ~tc~Pc6Pv !!! ,

~50!

whereP~t 6Pv ! is given by Eq.~46!.

V.B.3. Event Tree of the Pressurization Case

The possible evolutions of the system are summa-
rized in the event tree presented in Fig. 3. It should be
observed that

• headers are defined on both process variables and
uncertain parameters

• the transition between discrete states 1 and 3 can
lead to completely different outcomes, depending
on the value of the uncertain parameters.

Such characteristics cannot be dealt with using clas-
sical analysis techniques. Section V.C displays how the
stimulus-based framework is capable of treating this
problem.

V.C. Application of the Stimulus-Driven
Approach

First, we would like to underline the illustrative pur-
pose of this treatment for the present problem. Indeed,
the analytical expressions given in Sec. V.B are quite
easily deduced from the analysis of the potential scenar-
ios, while the introduction of the concept of stimulus
brings more complexity in the developments below. This
section has thus to be considered as a proof of the co-
herence of the theory, the utility of which fully appears
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when it becomes the support of an automatic genera-
tion of accident sequences and of their probabilistic
assessment.

V.C.1. Inventory of Stimuli and
Induced Events

Let

• F1 denote the end of the combustion process, which
causes the end of the containment pressurization

• F2 correspond to the crossing of the minimum re-
lief valve pressure thresholdPvo, from which the
valve opening can be actuated

• F3 be equivalent toF2, for the minimum rup-
ture pressurePc

o, and the actual rupture that can
follow.

The distributions for the activation times and time
delays are now to be defined in the different dynamics
the system can evolve in. One can directly notice that
none of the stimuli can be activated in both configura-
tions 2 and 4, what we express by writing

fi
Fj ~t ! 5 d~t 2 tAD! , j 5 1,2,3,i 5 2,4 , ~51!

wheretAD is an upper bound of the accident duration~see
Sec. III.B.3!. The pdf of the delay is irrelevant in these
cases.

In configuration 1, the distribution of the activation
time of F1 is that of tH , while the pressurization stops
instantaneously whenF1 is activated:

f1
F1~t; P' ! 5

fHSt 1
P'

c
D

12 FHS P'

c
D and h1

F1~t; P'' ! 5 d~t !

~52!

if dynamics 1 is entered atP' and stimulusF1 is acti-
vated atP'' . The same expressions are also valid in con-
figuration 3.

As for stimuli F2 andF3, their activation times are
deterministic and defined by the dynamics in the current
configuration, while the delay distributions are the direct
transposition in the time space of the pdf ’s ofPv andPc

since the pressure evolution is monotonic:

f1
F2~t; P' ! 5 dSt 2

Pvo 2 P'

c
D{u~Pvo 2 P' !

and

h1
F2~t; P'' ! 5 cfv~P'' 1 ct! ~53!

Fig. 3. Event tree of the pressurization test case.
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f1
F3~t; P' ! 5 dSt 2

Pc
o 2 P'

c
D{u~Pc

o 2 P' !

and

h1
F3~t; P'' ! 5 cfc~P'' 1 ct! . ~54!

In dynamics 3,F2 cannot be activated@see Eq.~51!# ,
while the deterministic activation ofF3 comes from
Eq. ~46!:

f3
F3~t; P' ! 5 u~Pc

o 2 P' !{dSt 2
1

kv
lnS c 2 kvP'

c 2 kvPc
oDD .

~55!

The distribution of the corresponding delay is again ob-
tained by the change of variableP r t in fc~Pc!; i.e.,

h3
F3~t; P'' ! 5 ~c 2 kvP'' !e2kv t

3 fcS c

kv
2 S c

kv
2 P''De2kv tD . ~56!

Let us remark here that the definition of the stimuli
is not unique. We could indeed have referred to a stim-
ulus F1

' corresponding to the start of the pressurization
when entering dynamics 1. The delay in this latter case
would have been the combustion time. Mathematically,
this would simply result in the permutation of the expres-
sions off1

F1 andh1
F1 in Eq. ~52!.

V.C.2. Rupture Probability and
Ingoing Densities

Having defined in the problem description a fifth
configuration that is entered when rupture occurs, we
can assimilate the rupture probability to that of being in
state 5, no matter what the pressure value is. As this state
is absorbing, we can write

Prupt~t ! 5 E
o

t

dtEdPw~P,5,t! . ~57!

Any dependence in a setA of stimuli remaining
activated after entering state 5 is irrelevant here. How-
ever, if stimulusF3 was activated before a transition be-
tween configurations 1 and 3, it would remain activated
after this change of dynamics. This would require the
full non-Markovian treatment. Yet, we have to deal with
a delay distribution expressing the time necessary to reach
a given zone in the process variables domain. As men-
tioned in Sec. IV.B, the conditional pdf of the delay takes
the form Eq.~31!, and a semi-Markovian frame is suffi-
cient. From Eq.~22!, we obtain the form of the ingoing
density into state 5:

w~P,5, t ! 5 Ep~P',1,o!{d~P 2 P' 2 ct!{q15
F3~t; P' ! dP'

1 (
A
E

o

t

dtEdP' w~P',3,t,A!

3 dSP 2
c

kv
1 S c

kv
2 P'De2kv~t2t!D

3 q35
F3~t 2 t; P',A!

5 d~P 2 ct!{q15
F3~t;0!

1 (
A
E

o

t

dtEdP' w~P,3,t,A!

3 dSP 2
c

kv
1 S c

kv
2 P'De2kv~t2t!D

3 q35
F3~t 2 t; P',A! ~58!

where we have accounted for the initial condition
p~P',1,o! 5 d~P' ! and where the sum onA is limited to
the empty set and$F3% , given the physics of the problem.
We also have

w~P,3, t,A! 5 @u~P 2 Pc
o!dA,$F3% 1 u~Po

c 2 P!dA,B #

3 EdP' p~P',1,o!

3 d~P 2 P' 2 ct!{q13
F2~t; P' !

5 @u~P 2 Pc
o!dA,$F3% 1 u~Po

c 2 P!dA,B #

3 d~P 2 ct!{q13
F2~t;0! . ~59!

Note that there is no dependence onA in the expression
of the probabilities per unit time of the transitions leav-
ing dynamics 1 because no stimulus can be initially
activated. From Eq.~16!, we find

q15
F3~t;0! 5 E

o

t

dSt 2
Pc

o

c
D{cfc~Pc

o 1 c~t 2 t!! dt

3 F12E
o

t

dt ' fH ~t ' !G
3 F12E

o

t

dt 'E
o

t '

dt dSt 2
Pvo

c D
3 cfv~Pvo 1 c~t ' 2 t!!G

5 c{fc~ct!{u~ct 2 Pc
o!

3 ~12 FH ~t !!{~12 Fv~ct!! ~60!
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and similarly

q13
F2~t;0! 5 c{fv~ct!{u~ct 2 Pvo!{~12 FH ~t !!{~12 Fc~ct!! . ~61!

As for q35
F3 , we can observe that the dependence onA amounts to using Heaviside stepfunctions on the value of

the process variableP, thereby allowing one to replace the sum onA in Eq. ~58! with a unique expression:

q35
F3~t; P' ! 5 Hu~Pc

o 2 P' !E
o

t

f3
F3~t; P' !{h3

F3St 2 t;
c

kv
2 S c

kv
2 P'D{e2kvtD dt

1 u~P' 2 Pc
o!{E

o

t

d~t!{

h3
F3S P' 2 Pc

o

c
1 t 2 t; EP~P' !D

12 Fc~P' !
dt6

3 312E
o

t

dt 'E
o

t '

dt

fHSt 1
P'

c
D

12 FHS P'

c
D {d~t ' 2 t!4 , ~62!

where Eq.~29! has been used for the conditional delay density in the caseP' . Pc
o. Indeed, when stimulusF3 is

activated before the transition 1r 3, the virtual initial pressureEP~P' ! ~which was introduced in Sec. IV.B! is that
obtained when evolving backward in dynamics 3 during a time interval~P' 2 Pc

o!0c, starting fromP' ; i.e.,

c 2 kvP' 5 ~c 2 kv EP~P' !!{e2kv{@~P'2Po
c!0c# . ~63!

Accounting for Eqs.~55! and~56!, we can write explicitly

q35
F3~t; P' ! 5 Hu~Pc

o 2 P' !uSt 2
1

kv
lnS c 2 kvP'

c 2 kvPo
cDD{~c 2 kvP' !{e2kv t{fcS c

kv
2 S c

kv
2 P'D{e2kv tD

1 u~P' 2 Pc
o!{

~c 2 kv EP~P' !!{e2kv ~@~P
'2Po

c!0c#1t! fcS c

kv
2 S c

kv
2 EP~P' !D{e2kv ~@~P

'2Po
c!0c#1t!D

12 Fc~P' !
6

3

12 FHSt 1
P'

c
D

12 FHS P'

c
D . ~64!

Using Eqs.~58! through~64! and integrating carefully the Dirac peaks, we find the following for the ingoing
density in state 5:

w~P,5, t ! 5 d~P 2 ct!{cfc~ct!{~12 FH ~t !!{~12 Fv~ct!!{u~ct 2 Pc
o!

1 E
Pv

o

Pc
o

dP' dSP' 2 ct 1
c

kv
lnS c 2 kvP'

c 2 kvP
DD{cfv~P' !u~P 2 P' !{fc~P!

3 ~12 FH ~t !!{u~P 2 Pc
o!{uS c

kv
2 PD

1 E
Pc

o

c0kv

dP' dSP' 2 ct 1
c

kv
lnS c 2 kvP'

c 2 kvP
DD{cfv~P' !u~P 2 P' !{fc~P!

3 ~12 FH ~t !!{uS c

kv
2 PD . ~65!

One can then easily check that the term-by-term integration ofw~P,5, t ! according to Eq.~57! gives back the
results Eqs.~48! and~50!.
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VI. CONCLUSIONS

Dynamic approaches to PRA have given consider-
able insight into the accident sequence delineation of an
event tree by modeling more neatly how the competition
processes between branching events are driven by the
system dynamics in degraded working modes. However,
when the occurrence of some events is substantially de-
layed after their actual triggering, the classical theory of
probabilistic dynamics turns out to fall short of the meth-
odological challenge entailed by such a situation.

The theoretical extensions developed in this paper
aim at tackling this more complex modeling of compet-
ing events. They are based on the concept of stimulus,
which needs to be activated before an event can actually
occur after some delay. The next event to take place
therefore corresponds to the minimum total time neces-
sary for the associated stimulus to be activated and for
the delay to be elapsed. This extension of the theory was
straightforwardly achieved in a semi-Markov frame-
work, but the latter restriction implies that all stimuli are
disactivated after each change of configuration. When
this assumption is not satisfied in practice, information
on the past history of the system in the transient devel-
opment must be kept in memory.A further non-Markovian
extension had thus to be realized, and both forward and
backward cases were considered in establishing the cor-
responding evolution equations of the process.

These theoretical extensions were shown to be fully
compatible with previous, more limited dynamic ap-
proaches to PSA, such as the automatic generation of
accident sequences based on the crossing of setpoints
and used in level-1 integrated PRA. A test case with a
fully analytical solution was also developed to display
the coherence and capabilities of the new approach.

The numerical challenge induced by this advanced
theory of dynamic reliability is of course even larger than
the one that was entailed by the classical TPD. Yet, recent
years have shown that this obstacle could be overcome
with the development of computer technology and of ap-
propriate solution schemes. We believe on this basis that
an optimistic forecast can be emitted for this stimulus-
driven approach. Anyway, it already gives a theoretical
framework from which simplifications can be made and
the quality of approximate solution techniques assessed.

APPENDIX A

FACTORIZATION OF THE TRANSITION
PROBABILITY PER UNIT TIME

Let fi ~t; Su! be the pdf of the sojourn time in dynam-
ics i if the latter was entered at pointSu. We have

fi ~t; Su! 5 (
jÞi

qij ~t; Su! , ~A.1!

whereqij ~t; Su! is the probability per unit time of a tran-
sition between dynamicsi andj a timet after enteringi
at Su ~see Sec. II.B!.

Let fij ~t; Su! be the pdf of the transition timei r j if
this transition is considered separately, and letFij ~t; Su!
be the corresponding cdf. Then,

qij ~t; Su! 5 fij ~t; Su!{)
kÞj

~12 Fik~t; Su!! ~A.2!

since the transitioni r j will take place at timet if and
only if the other transitions out ofi have not yet occurred
at this instant.

The transition rate betweeni andj, giveni is entered
at point Su, is written

p~i r j, t; Su! 5

fij ~t; Su!{)
kÞj

~12 Fik~t; Su!!

)
k

~12 Fik~t; Su!!

5
fij ~t; Su!

12 Fij ~t; Su!
. ~A.3!

Note that these transition rates are explicitly dependent
on time. Moreover, the dependence on the process vari-
ables is mentioned with respect to the starting point in
the system configuration that is left and not as usual with
respect to the value of these variables at the transition
time. The bridge between both notations is done by the
deterministic evolution ini .

From Eqs.~A.1!, ~A.2!, and~A.3!, the correspond-
ing transition probability is directly deduced:

[p~i r j, t; Su! 5
p~i r j, t; Su!

(
k

p~i r k, t; Su!
5

qij ~t; Su!

fi ~t; Su!
. ~A.4!

The factorization between the distribution of the sojourn
time in a configuration and the transition probabilities
out of this configuration, which is suggested in Sec. II.B,
can indeed lead to

fi ~t; Su! [p~i r j, Sx!{d~ Sx 2 Sgi ~t, Su!!

5 qij ~t; Su!{d~ Sx 2 Sgi ~t, Su!! ~A.5!

if the ratiosqij ~t; Su!0fi ~t; Su! have no explicit time depen-
dence, i.e., if they depend on time only through the dy-
namic evolution Sgi ~t; Su!. In this last expression, we have
used again the classical writing of the transition rate,
with no time dependence and the condition on the value
of the process variables at the transition time. This explicit
independence of time is the condition to be satisfied in
order to use the outgoing density in the semi-Markov
modeling.
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APPENDIX B

BACKWARD TREATMENT

B.I. MARKOVIAN BACKWARD TPD

The backward counterpart3 of the C.K. equation@see
Eq. ~4!# is written

p~ Sx, i, t 6 Sxo, k, to!

5 dik e
2E

to

t

l i ~ Sgi ~s2 to, Sxo!! ds
{d~ Sx 2 Sgi ~t 2 to, Sxo!!

1 (
jÞk
E

to

t

p~k r j 6 Sgk~t 2 to, Sxo!!

3 e
2E

to

t

lk~ Sgk~s2to, Sxo!! ds

3 p~ Sx, i, t 6 Sgk~t 2 to, Sxo!, j,t! dt , ~B.1!

wherep~ Sx, i, t 6 Sxo, k, to! stands for the pdf of finding the
system in state~ Sx, i ! at timet, given it was in state~ Sxo, k!
at timeto.

B.II. BACKWARD APPROACH TO THE
SEMI-MARKOV MODELING OF

DYNAMIC RELIABILITY

Keeping in mind the fact that reference must be made
to the transition between two plant configurations, we
reinterpret the conditional pdfp~ Sx, i, t 6 Sxo, k, to! as the
probability density of being in state~ Sx, i ! at timet, given
the plantentereddynamicsk at to with process variables
Sxo. With this peculiar meaning of the conditional pdf,

Eq. ~B.1! becomes

p~ Sx, i, t 6 Sxo, k, to!

5 dik~12 Fi ~t 2 to; Sxo!!d~ Sx 2 Sgi ~t 2 to, Sxo!!

1 (
jÞk
E

to

t

qkj ~t 2 to; Sxo!

3 p~ Sx, i, t 6 Sgk~t 2 to, Sxo!, j,t! dt , ~B.2!

whereFi ~t; Sxo! is the cdf of the sojourn time in configu-
ration i , entered atSxo, associated with Eq.~A.1!.

B.III. SEMI-MARKOV BACKWARD
TREATMENT OF STIMULUS
ACTIVATIONS AND DELAYS

We must now generalize Eq.~B.2! to the case of
stimulus-driven transitions. Using Eqs.~16! and ~24!,
we readily find

p~ Sx, i, t 6 Sxo, k, to!

5 dik~12 Pi ~t 2 to; Sxo!!d~ Sx 2 Sgi ~t 2 to, Sxo!!

1 (
jÞk

(
F
E

to

t

qkj
F ~t 2 to; Sxo!

3 p~ Sx, i, t 6 Sgk~t 2 to, Sxo!, j,t! dt , ~B.3!

where the conditionSxo, k, to, which refers to the entry in
the plant configuration, relates directly to the definition
of qkj

F ~t 2 to; Sxo!.

B.IV. GENERAL BACKWARD
NON-MARKOV TREATMENT

The backward treatment can also be applied in this
case if we use the following conditional pdf:

p~ Sx, i, t 6 Su*, k,t*,t, AtA ,A! , ~B.4!

which is the probability density to find the system in
~ Sx, i, t !, given it underwent an event~change of dynam-
ics or stimulus activation! in statek at ~ Su*,t* !, resulting
in a setA of activated stimuli, and given statek was
entered att. Similarly to what was done in the forward
case, an explicit reference to the timet* of the last event
is done, even if it will always be equal either to the entry
time t or to one of the components ofAtA .

The unconditional pdf is directly obtained from

p~ Sx, i, t !

5 (
k
Ed Su*E

o

t

dtE
t

t

dt* p~ Sx, i, t 6 Su*, k,t*,t, AtB ,B!

3 d~t!d~t 2 t* !p~ Su*, k,t! . ~B.5!

The conditional pdf@Eq. ~B.4!# is obtained either
from a “free flight” of the system without any event
taking place betweent* and t or from any next event
occurring at an intermediate times* [ @t*, t # ~see Fig. 4!,
from which the conditional pdf is further considered.

Fig. 4. Evolution of the process variables and configurations up to a next event.
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In mathematical terms, we write

p~ Sx, i, t 6 Su*, k,t*,t, AtA ,A!

5 dik{d~ Sx 2 Sgi ~t 2 t*, Su* !!~12 Pi ~t;t*,t, Su*, AtA ,A!!

1 (
GÓA

(
j
E

t*

t

ds*E
t

s*

dsE
t*

t

dtG p~ Sx, i, t 6 Sgk~s* 2 t*, Su* !, j,s*,s, AtA1$G% ,A 1 $G%!

3 djk d~s2 t!d~s* 2 tG !pk
G*~s* ;t*,t, Su*, AtA ,A!

1 (
A '

(
j
E

t*

t

ds*E
t

s*

dsp~ Sx, i, t 6 Sgk~s* 2 t*, Su* !, j,s*,s, AtA ' ,A ' !

3 d~s2 s* ! (
G[A

pkj
G~s* ;t*,t, Su*, AtA ,A!dkj

G~A r A ' !

5 dik{d~ Sx 2 Sgi ~t 2 t*, Su* !!~12 Pi ~t;t*,t, Su*, AtA ,A!!

1 (
GÓA

E
t*

t

dtG p~ Sx, i, t 6 Sgk~tG 2 t*, Su* !, k,tG,t, AtA1$G% ,A 1 $G%!{pk
G*~tG;t*,t, Su*, AtA ,A!

1 (
A '

(
j
E

t*

t

dsp~ Sx, i, t 6 Sgk~s2 t*, Su* !, j,s,s, AtA ' ,A ' ! (
G[A

pkj
G~s;t*,t, Su*, AtA ,A!dkj

G~A r A ' ! . ~B.6!

Though one could be reluctant to consider Eq.~B.6! in detail, its interpretation is straightforward. The first term
corresponds to the abovementioned free flight, where the system keeps evolving in the same state, while no activated
stimulus leads to a change in dynamics and no additional stimulus activation takes place. The integral terms make the
bridge between the condition~ Su*, k,t*,t,A! and a condition~ Sgk~s* 2 t*, Su* !, j,s*,s,A ' !, posterior in time and
corresponding to the status of the system after a first event, either a new activation or a change in dynamics. In the
first case, the state and entry time are of course conserved. In the second case, the last event is from now on a change
in dynamics before any other event can take place and leads the system into statej, with the stimuli remaining
activated forming setA ' . This time, there is no need to integrate any component ofAtA since this vector appears as a
conditioning variable in the pdf and not as one of its arguments, such as in the forward case.

APPENDIX C

ADAPTATION OF THE MODELING IN THE ASSUMPTION OF FACTORIZATION

C.I. SEMI-MARKOV TREATMENT OF STIMULUS-ACTIVATED TRANSITIONS

Some simplification can be brought to the developments given in Eqs.~22!, ~23!, and~24! if we adopt again the
assumption of factorization between the distribution of the sojourn time in a plant configurationi and the transition
probabilities out ofi ~see Appendix A!. In this case, we have to consider the probabilitypi

F~t; Su! dt of leaving
dynamicsi because of the occurrence of the event associated withF, after a timedt aboutt, given this configuration
was entered atSu. Indexing the transition probabilities with the stimulus causing the transition, Eq.~22! becomes

w~ Sx, i, t ! 5 (
F

(
jÞi
E

o

t

dtEd Su @p~ Su, j,t!d~t! 1 w~ Su, j,t!#d~ Sx 2 Sgj ~t 2 t, Su!!pj
F~t 2 t; Su! [pF ~ j r i 6 Sx! . ~C.1!

Alternatively, we can introduce, within this assumption of factorization, the outgoing densitycF ~ Sx, i, t !, conditional
to stimulusF having triggered the event causing the branching out ofi . This outgoing density obeys an adapted form
of Eq. ~4!:

cF ~ Sx, i, t ! 5 (
jÞi

(
G
E

o

t

dtEd SuFp~ Su, i,t!d~t! 1 (
G

cG~ Su, j,t!{ [pG~ j r i 6 Su!G
3 d~ Sx 2 Sgi ~t 2 t, Su!!{pi

F~t 2 t; Su! . ~C.2!
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The probability densityp can then be expressed in a way equivalent to Eq.~23!:

p~ Sx, i, t ! 5 (
jÞi
E

o

t

dtEd SuFp~ Su, i,t!d~t! 1 (
G

cG~ Su, j,t!{ [pG~ j r i 6 Su!G
3 d~ Sx 2 Sgi ~t 2 t, Su!!@12 Pi ~t 2 t; Su!# .

As for the backward formulation Eq.~B.3!, in this assumption it becomes

p~ Sx, i, t 6 Sxo, k, to! 5 dik d~ Sx 2 Sgi ~t 2 to, Sxo!!@12 Pi ~t 2 to; Sxo!#

1 (
jÞk

(
F
E

to

t

pk
F~t 2 to; Sxo! [pF ~k r j 6 Sgk~t 2 to, Sxo!!p~ Sx, i, t 6 Sgk~t 2 to, Sxo!, j,t! dt . ~C.3!

C.II. GENERAL NON-MARKOV TREATMENT

In this case, we can resort again to outgoing densities, which are defined in the following way:

• cout
F ~ Sx, i, t, AtA ,A! is the outgoing density out of dynamicsi at point Sx and timet, via theF-induced event if the

state transition isenteredwith a setA of activated stimuli~r F [ A!

• cF ~ Sx, i, t,t, AtA ,A! is the activation density of stimulusF in configurationi , at ~ Sx, t !, for an entry ini at t, and
a setA of stimuli already activatedbefore~r F Ó A!. Therefore, the reference to the activation timet is not
redundant in this case as it was when modeling the problem with ingoing densities~see Sec. IV.C!. Yet, the
equalityt 5 tF must be accounted for as soon as setA is updated.

We also introduce in the transition probabilities the rules of disactivation of the stimuli associated with a given
transition, in the form [pG~ j r i 6 Su;A ' r A!, with the subsequent update ofAtA ' in AtA . Note that the probability per
unit time of a transition out ofi via the event induced by stimulusF @see Eq.~33!# no longer depends on the
configuration reached after the transition. In order to avoid any confusion with Eq.~32!, we will write this quantity
pi*

F ~t;t*,t, Su*, AtA ,A!.
With these notations, ifF [ A, we have

cout
F ~ Sx, i, t, AtA ,A!

5 Ed SuE
o

t

dt*E
o

t*

dt d~ Sx 2 Sgi ~t 2 t*, Su!!pi*
F ~t;t*,t, Su, AtA ,A!

3 F (
G[A

cG~ Su, i,t*,t, AtA0$G% ,A0$G%!d~t* 2 tG !

1 (
A '.A

(
G[A '

(
jÞi

E
o

t*

. . .E
o

t*

d AtA '0A cout
G ~ Su, j,t*, AtA ' ,A ' !d~t* 2 t! [pG~ j r i 6 Su;A ' r A!G . ~C.4!

Again, a multiple integral on the components ofAtA '0A , since the corresponding activation times do not condition the
future evolution of the system after the change of dynamics. Contributions corresponding to all acceptable activation
times for this subset of stimuli must then be accounted for.

From the definition of the outgoing activation density hereabove, we must have this timeF Ó A. Then,

cF ~ Sx, i, t,t, AtA ,A!

5 dA,B d~t!Ed Su p~ Su, i,o!d~ Sx 2 Sgi ~t, Su!!pi
F*~t;o,o, Su, AtB ,B!

1 Ed SuE
t

t

dt* d~ Sx 2 Sgi ~t 2 t*, Su!!pi
F*~t;t*,t, Su, AtA ,A!

3 F (
G[A

cG~ Su, i,t*,t, AtA0$G% ,A0$G%!d~t* 2 tG !

1 (
A '.A

(
G[A '

(
jÞi

E
o

t*

. . .E
o

t*

d AtA '0A cout
G ~ Su, j,t*, AtA ' ,A ' !d~t* 2 t! [pG~ j r i 6 Su;A ' r A!G . ~C.5!
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Again, such as in Eq.~35!, we can observe an additional term associated with the first activation in the transient
history.

Alternatively to Eq.~36!, the probability distribution in configurationi can finally be expressed as

p~ Sx, i, t;A! 5 dA,BEd Su p~ Su, i,o!d~ Sx 2 Sgi ~t, Su!!~12 Pi ~t;o,o, Su, AtB ,B!!

3 Ed SuE
o

t

dt*E
o

t*

dtE
o

t*

. . .E
o

t*

d AtA d~ Sx 2 Sgi ~t 2 t*, Su!!~12 Pi ~t;t*,t, Su, AtA ,A!!

3 F (
G[A

cG~ Su, i,t*,t, AtA0$G% ,A0$G%!d~t* 2 tG !

1 (
A '.A

(
G[A '

(
jÞi

E
o

t*

. . .E
o

t*

d AtA '0A cout
G ~ Su, j,t*, AtA ' ,A ' !d~t*2 t! [pG~ j r i 6 Su;A 'rA!G . ~C.6!

Finally, we will give the backward form of Eqs. XXX with these assumptions, starting from Eq.~B.6!:

p~ Sx, i, t 6 Su*, k,t*,t, AtA ,A! 5 dik{d~ Sx 2 Sgi ~t 2 t*, Su* !!~12 Pi ~t;t*,t, Su*, AtA ,A!!

1 E
t*

t

dtG (
GÓA

pk
G*~tG;t*,t, Su*, AtA ,A!p~ Sx, i, t 6 Su*, k,tG,t, AtA1$G% ,A 1 $G%!

1 (
jÞk
E

t*

t

ds (
G[A

pk*
G ~s;t*,t, Su*, AtA ,A! (

A '
[pG~k r j 6 Sgk~s2 t*, Su* !;A r A ' !

3 p~ Sx, i, t 6 Sgk~s2 t* ; Su* !, j,s,s, AtA ' ,A ' ! , ~C.7!

where the assumption of factorization between the dis-
tribution of the transition time and the transition prob-
abilities was introduced. As before, we haveSu* 5
Sgk~t* 2 t, Su!.

In this expression, we have willingly used in the two
integrals two different dummy variables~s* and s, re-
spectively! in order to highlight the interpretation of each
term. The first one corresponds to the activation of a new
stimulus, with this last event taking place at times* . The
second one is associated with a change in dynamics,
with s being the entry time in the new state. Both events
have to occur aftert* , where the system is known to be
at point Su* .
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