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Abstract —The theory of probabilistic dynamics (TPD) offers a framework capable of modeling the
interaction between the physical evolution of a system in transient conditions and the succession of
branchings defining a sequence of events. Nonetheless, the Chapman-Kolmogorov equation, besides being
inherently Markovian, assumes instantaneous changes in the system dynamics when a setpoint is crossed.
In actuality, a transition between two dynamic evolution regimes of the system is a two-phase process.
First, conditions corresponding to the triggering of a transition have to be met; this phase will be referred

to as the activation of a “stimulus.” Then, a time delay must elapse before the actual occurrence of the
event causing the transition to take place. When this delay cannot be neglected and is a random quantity,
the general TPD can no longer be used as such. Moreover, these delays are likely to influence the ordering
of events in an accident sequence with competing situations, and the process of delineating sequences in
the probabilistic safety analysis of a plant might therefore be affected in turn. This paper aims at present-
ing several extensions of the classical TPD, in which additional modeling capabilities are progressively
introduced. A companion paper sketches a discretized approach of these problems.

I. INTRODUCTION the probability of a transition between two dynamic evo-
lution modes. This statement is obvious when the dynam-
As an accident transient develops after the occurics is modified by the activation of a protection device
rence of an initiating event perturbing the steady-statgfter the crossing of a thresholde., setpoink on the
working conditions of a plant, the description of its dy- process variables. But, the failure rate of hardware com-
namic evolution has to be supplemented by giving alhonents is also likely to be influenced by variations in
possible causes of possibly stochastic bifurcation beremperature or pressure, for instance.
tween deterministic sections of a trajectory in the space  This close interaction between the process variables
of process variables. These changes in the system dgvolution and the succession of events defining an acci-
namics are due either to stochastic hardware failures @fent scenario is at the heart of the modeling of accident
to automatic control-protection or operator-driven ac-propagation in industrial systems, such as nuclear power
tions aiming at mitigating the accident. In turn, the valueplants. Yet, it has not received sufficient consideration,
taken by the process variables can significantly affecgr at least sufficient visibility, in the event trékault tree
methodology typically used in conventional probabilis-
*E-mail: pelabeau@ulb.ac.be tic safety analysi§PSA) studiest-?




X-6 09-03 225 0309/05 11:26 am Page: 2

2 LABEAU and IZQUIERDO

Observing and formalizing this interaction processactivation before the system dynamics is actually modi-
gave rise to the development of the theory of probabilisfied. This more complex interaction has to be modeled in
tic dynamics(TPD), also known as the theory of contin- the dynamic reliability framework.
uous event treesThe original paper accounted only for This paper is organized so as to highlight the evolu-
stochastic transitions between system states, but the thedign of the methodology. In order to do so, the fundamen-
was generalized to setpoint transitidnand it then fully  tal aspects of the TPD are reviewed and summarized in
appeared as an extension of classical event trees. Prolizec. I, before its extension to a semi-Markov treatment
bilistic dynamics is also known to put within a commonis presented in a slightly reformulated fashion and dis-
framework different previous attempts at bringing thecussed. Section Il displays original adaptations of the
dynamics into the sequence delineation probtem. semi-Markov TPD in order to account for specific as-

Up to now and mainly for setpoint transitions, ef- pects of PSA. It first deals with instantaneous and ran-
forts to reinterpret the actual engineering practice in termgdom variations of the process variables; then, it introduces
of the TPD equations led to confirmation of the ap-the concept of stimulus and how it can be implemented
proach® However, the studies that were perfornied within the semi-Markov theory. This latter assumption
indicated is—partly—released in Sec. IV, where a non-Markov

S ) ) ) treatment is provided. It is then proven that this latter

« the difficulties associated with ensuring the over-mogeling easily reduces to the setpoint approach of Ref. 4

all consistency of a correct sequence delineationjf appropriate simplifications are brought into the equa-

house event information as well as operator delayd)€W concepts and showing the coherence of the theory.
Concluding remarks are then provided.

Other theoretical as well as practical applications,
mostly in the context of level-1 PSA studies, are re-
ported in Ref. 8. A nonnuclear case, pertaining to aero- Il. THE THEORY OF CONTINUOUS
nautics, is described in Ref. 9. More recently, a Monte EVENT TREES
Carlo—based level-2 application of the TPD was pro-

pounded in Ref. 10. Also, when considering level-2 prob- . . i
lems, or in general continuous event trees in which . The Markovian version of the TPD has been exten

branchings have a high uncertainty in the occurrence o ¢! described in Refs. 3 and 12, both in differential
phenomendand are therefore more stochaktie TPD and integral forms. We summarize the main aspects of
needs some adaptations in order to obtain an equivalem?a,l:tstetg C;i?;r?cﬁﬁc. ”.rﬁcaer;g e;(”p(ism h%W dthr:Zrtr?iﬁoa:y-
consistency. These extensions are the subject of this woﬁff;oach t0 PSA. As thg dp namic’as ectsgof mgn—machir?e
A companion papét sketches a discretized treatment ofP : b ynar pect

these new problems. interactions in accident transients were incorporated, mod-

The main concept introduced in this extension of the6|S of the human operator were soon envisioned for in-

theory is that of stimulus activation, which must takecgjsé%?s'rl dﬁ:?ﬁ;ﬁgﬁgﬁeﬁoﬁiﬁ ;ﬁ t;:gt’ Ltjrr]slseMar-
place prior to the actual transition between two syster‘r‘?l P q purely

configurations corresponding to different dynamic<OVian one, and this initial extension of the theory is
evolutions. A stimulus, which is usually defined in cor- reproduced as a starting point for new semi-Markovian

respondence to some specific values of the proce%nd non-Markovian extensions entailed by the level-2

variables, can for instance be a signal initiating the SA constraints.

decision-making process of the operator team or the cross- ,

ing of a setpoint triggering the action of an automatic IlA. Integral Equations of the
protection device. It could also correspond to the entry Markovian TPD

of the system in a region of phase-space where ignition | o ¢ pe the vector of process variables describing

criteria are fulfilled. In general, the term “stimulus” cov- the dynamic behavior of the plant. We denoteibijne

ers any situation that potentially causes, after a givearoup of system configurations in which the dynamic
time delay, an event to occur and subsequently a brancliy,q|tion is given by the equivalent explicit form
ing to take place in the continuous event tree.

Time delays are of paramount importance in this X(t) = Gi(t, %) , Xo=Gi(0, %) . (1)
description of an accident progression. Indeed, the com-
petition between events determining the sequence delif-he branchings in an accident sequence correspond to
eation is driven as before by the minimum time to thetransitions between two dynamigcandi, which are char-
occurrence of an event, but this process is now given bgcterized by transition ratgs(j — i|X), possibly de-
the sum of twa(possibly random times: the time inter- pendent on the process variables value but explicitly
val necessary to reach a zone in phase-space wherdralependent of time in the Markovian case. The total
stimulus is activated and the time delay following thistransition rate out of configurationis written as

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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AR =D p(j—=il%) . (2 and

i#]j

t
The integral form of the Chapman-Kolmogorov PR = % . dTJdU p(j = ilmy(a,j,7)
(C.K.) equation gives the evolution of the probability :

density function(pdf) 7 (X,i,t) of finding the plantin a X 8(X— G (t—7,0)

configurationi with process variablegsa timet after the

beginning of the transient. We can express the result given ,f"fm(g(s’ ) ds

in Ref. 3 in terms of the outgoing densify( X, i, t) leav- X Aj(X)e n=1 ; (6h)

ing configurationi atx, t:
(MW (X,i,1) is directly understood as the outgoing den-
(X0, t) = A ((X)m(X0,1) , (3)  sity ofi at pointx and timet aftern previous transitions
o between system configurations. In an event tree interpre-
whose evolution is given by tation of the process; " (X, i,t) appears as the density
of branching out of dynamidsatx, t, givenn branchings
WX, t) = fw(uy i,0)6(X — Gi(t,0)) had already taken place after the occurrence of the ini-
tiating event. These densities in the different system dy-
namics can be iteratively calculated from Efb), and
—fl/\i(gi(s,u)) ds the probability density to be in a given dynamice., on
X Ai(x)e e da a given branchaftern branchings is written

t t
+> dedUz//(U,j,T)ﬁ(j—>i|El) 7™ (%,i,1) = D, dedL‘up(”1)(U,j,7')[5(jei|u)

j#i Yo j#i Jo
X 8(X—Gi(t—7,0)) X &6(X— Gi(t—7,0))

t—r
—f Ai(gi(s,0)) ds

~ [T n@sad
X Ai(R)e , (4) XeL mE

(7

wherep(j — i|a) =p(j — i|0)/A;(0) is the probability It was shown in Ref. 4 that classical event trees can be
of a transition to configuratioh given configuratiorjis ~ figorously derived from this theory when considering

exited at pointd in the process variables space. only setpoint transitions, i.e., transitions taking place when
The interpretation of Eq4) is direct: The plantleaves thresholds on the process variables are crossed.
configurationi at timet with process variableseither if An alternative presentation is based on the ingoing

it has been in configurationfrom the beginning of the densitye(X,i,t) into dynamics, which is defined by
transient, following dynamic§;(t,G) during a time dis- . o .
tributed according ta; (X)exp(— [ A; (g (s,0)) ds), or if e(%,i,t) = 2 p(j =i (%,j,1)
the last transition to configurationtook place at time 7
T < t, where the system left configuratigrand the so- L
journ timet — 7 in dynamicsi was again given by the = % P = 1[R¢(%].1) - (8)
exponential distribution. :

How can Eq(4) bring insight into the sequence gen- The evolution of this density is straightforwardly de-
eration process? The link between the mathematical extuced from Eqs(4) and(8):
pressions and the branching process comes from the
formal development X,i,t) in Neumann serietsee ) U . o
et 2 opment ab (R L.t B e = a1 -1 [ 705~ ga)

IEall

PR =2 (R (5) % X (R)e
n=o j

- ‘ j(gj(s,0))ds
J e da
It can be easily checkédrom Egs.(3), (4), and(5) that t )
g 453 (4. and(®) Y drdeqo(u,J,T)Aj<>'<>
j#i Yo
pOxiD = [7(01,04 53~ 6 t0)
—f Aj(gi(smyds o
X e J° p(j —i|x)

[resoe 64 X 8(— g (t—,0)) . ©)

X e

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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Both outgoing a_nd ingoing densities are directly re- ¢ (t;0)8(X — g;(t,0))
B lated to the pdfr(X%,i, t) as = (> [0 -f(5D)-6(X— G (6,0) | (12
(Rit) = fﬂ(U, i,0)5(%— G (t, U))e‘f"i(gi(w”ds dg  Wherefi(t; 0) is the pdf of the plant leaving configuration

j at timet after entering it at poinf. This density is
exponential in the Markovian assumption, but the factor-

! I . ization of g; in factorsf andp is valid in other cases,
+ % ) dTJdU ¢ (Q,j,7)p(j —il0) provided the probabilitie(j — i|%X) are (explicitly)
. independent of the time elapsed in dynanji¢see Ap-
7ft77/\,(g,(s, a) ds pendix A). When this assumption is satisfied, the sojourn

X 8(X—@gi(t—7,0)-e time in a given configuration and the transition proba-
bilities out of it are uncoupled, and the modeling can rest
, *ft)\i(gi(s,ﬂ)) ds on the outgoing density (X,i,t). We will nonetheless
= fW(U, 1,0)8(X— gi(t,a))e -° dd  presentin Secs. XXX a more general treatment base@lon
the ingoing density.
t A backward formalism is useful for the deduction of
+ f drfdu ©(0,i,7)-6(X— Gi(t— 7,0)) evolution equations for the dynamic equivalent to well-
o known system characteristics, such as reliability or mean
time to failure if the system failure is defined by the first
crossing of the bordeiD of a safety domairD in the
process variables space. The backward semi-Markov form
of the TPD is provided in Appendix B as well as the
backward version of all subsequent developments.

t—r
*f Ai(gi(s,0)) ds

X e (10

[I.B. Releasing the Purely Markovian

Assumption
The Markovian assumption we have used so far
amounts to assuming the system is without memory: No IIl. NEW PSA FEATURES IN
matter how long a system has been evolving in the cur- SEMI-MARKOV TPD

rent configuration, the probability of leaving it after a

given time delay remains the same. In other words, the  The main characteristics of the TPD that we summa-
future evolution depends only on the current situation ofized in Sec. Il are based on the following description of
the plant and not on its past history in the course of theccident sequences. Each time an event causes a modi-
transient. Mathematically speaking, the stochastic branchiication in the system configuration, the evolution laws
ing process is permanentlggenerated and the dis- of the process variables are likely to be affected. The
tribution of the sojourn time in a configuration is new dynamics is assumed to start from the final situation
exponential, with a transition rate having no explicit de-reached in the previous configuration, which is reached
pendence on time. immediately after the branching is solicited. This double
As mentioned before, such an assumption is not aphypothesis is not always true as either an instantaneous
propriate for the modeling of human actions. This is one&hange of the process variables value can sometimes oc-
of the main reasons why a semi-Markovian extension ofur at the branching point or the occurrence of the event
the TPD was soon proposed. In such a stochastic procesgusing the branching is delayed. The corresponding ad-

indeed, only the entry times in a new state are regeneraptation of the dynamic reliability methodology is pre-
tion points. Consequently, any modeling in this assumpsented in Secs. III.A and II1.B.
tion must refer to this specific event and then allow any

type of distribution for the sojourn time in a system con- [lI.A. Extension to Random Shocks
figuration. This can be done by using the ingoing densi- ) . .
ties introduced above and by slightly modifying E): Consider for instance a hydrogen laminar deflagra-

tion in the reactor containment in the propagation of an
) t ) ) accident. The timescale on which this event takes place
e(%,i,t) =2 dedU [7(0,j,7)8(r) + ¢(0,j,7)]  is much smaller than the characteristic time on which the
171 Jo whole sequence develops, and the explosion can there-
X 8(X—g(t—r,0)q(t—70) . (11 fore be assumed instantaneous when modeling the dy-
namic behavior of the system in these accident conditions.
Equation(11) makes use ofj; (t; 0), probability per unit  Process variables like £l H,O, CO, and CQ concen-
time of a transition between dynamigsndi at timet  trations, or containment pressure and temperature, leave
after entering dynamigsat pointd. Comparing Eqs(9)  the explosion with values different from those they had
and(11), one can easily check that this quantity takes thevhen the combustion was initiated. The magnitude of
following form in the Markovian case: the change is mainly driven by a parameter called “burn

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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completeness,” which can be expressed either throughsystem stay i, as propounded in Ref. 18. Instead, we
correlation on the gas concentratiéher via probability can assume that the shock variables are system param-
density:’ This implies that these instantaneous changesters whose values are likely to change randomly after a
can be driven by random parameters. transition. Therefore, ib(X, i, t, 2) is the ingoing density
In order to model this aspect, we present in this secintoi att with process variablesand shock variablez
tion a slightly revised approach of an idea propounded imnd if ¢;; (2| z*) is the pdf of the shock variables result-
Ref. 18 in order to model random loads within the frameing from the transition — j, given the latter was entered
of dynamic reliability. This original work was targeted with z*, we can write
on structural reliability, which can also be of interest in
level-2 PSA problems, but the potential applicability of o : + 5y — -*f St (g . (9F I\ A (5]
the model is broader. e(x1.t2) E ax” ] d275(x ~ 5y (X 2) 4 (2]27)
Random loads, due to external events, earthquakes .
etc., are likely to cause random changes of physical pa- _ -
rameters of the system, leading possibly to “instanta- X fo dTJdu Gi(t—70,27)
neous” random changes of some process variables values.

The suggested extension models the effect of the random X 8(X* —g(t—r,0)

loads during the transitions induced by external events o o

in the following way. A vectoz of random variableghe X [7(0,};7)8(7)8(2" = 2,)

burn completeness in our combustion exampdéantro- S ok

duced to describe the impact of the shock. Ve@as Te@)7, 2], (15

distributed according to the pdf; (z) associated with where a dependence arhas been added in the proba-
the transition from dynamicgto dynamicsi. The pro-  bility per unit timeg; andz, denotes the initial value of
cess variables are affected by this shock as follows: the shock parameters. We have further assumed that the
e instantaneous change of the process variables after the
X =9i(x52) (13 transition was driven by the shock variables resulting
wherex* andx~ are the values of the process variable from this transition. This hypothesis is then coherent with

o - . e treatment given in Eq14).
after and before the transition, respectively. As this chang o . .
is associated with the branching event, the semi-Markove”aL?lﬁ afdrglrﬂz:/]vg:kﬂrfairr%ndgm ;g?sdzsmat\?;ad)i’garm%
assumption must be adopted to model it. Introducing th y Yy app ging

. : ; eneral semi-Markovian equation of the ingoing density
impact of the random shock in EL1), we obtain over the shock variables distribution. Therefore, to keep

_ the new developments of Secs. XXX more readable e
e(%,i,t) = > [ dx* fd25(>'< — Vi (X*,2) ¢;i (2) will skip this potential dependence @in the sequel of
J#i the paper.
t
X f dedu Gi (t— 7;0) I11.B. Stimulus Activation and Delays

in the Branching Process
X 6(X* — gj(t —7,0))

X [m(0,j,m)8(7) +¢(0,j,m)] . (14 In Sec. Il, we summarized, and somewhat reformal-
Equation(14) embodies the following situation. The sys- 12€d, the fundamental equations of the TPD when the
tem entered configurationat timer with process vari- Cchange in the dynamic behavior of the plant occurs with
ablest. A time delayt —  later, a transition between "© delay after a solicitation causing a branching in the
dynamicsj andi occurs, while the continuous variables COntinuous event tree. In actuality, time delays must of-
have reached a value. As a result of a shock situation €N b€ considered between the triggering of a branching
associated with this transition, and characterized by shodk/€nt and its realization. We give the general name of
variablesz, an instantaneous change in the value of theStimulus” to any situation that can initiate a branching
process variables takes place, framto X = ¥ (X, 2). process. Examples of stimuli are, among others,
In the absence of a shock, the value of veaes irrel- « the entry in a plant configuration for the possible
evant, andk = ; (X% 2) = x*. Straightforward integra- failure in operation of a subsystem
tions overz andx* reduce Eq(14) to Eq.(11). . . .

Reference 18 suggests that the shock variables could * € crossing of a setpoint, actuating a control
also influence the transition probabilities. However, the protection device, or forcing the operator to
same vectoz cannot affect the sojourn time in configu- intervene
rationj and at the same time be distributed accordingto ¢ the entry of the system in a given region of the
a pdf depending on the peculiar transition following the process variable space, corresponding for instance

111.B.1. The Concept of Stimulus

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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to the satisfaction of ignition conditions for a gasthe actual occurrence of the first event. This shows how
explosion this “stimulus activationt+ time delay” concept might

« the fulfillment of a necessary condition for the &f€Ct the ordering of events in the tree. Dealing with this
occurrence of an event kind of competing effect continues as a major source of

) ~inspiration for dynamic reliability developments.
« the loss of safety margins to necessary conditions

for damage as, for instance, conditions that de- 111.B.2. Semi-Markov Treatment of
grade safety barriers. Stimulus-Driven Branchings

As observed from this nonexhaustive list, stimuli can
present very different natures, including phenomenologg|ant evolution following the occurrence of a given ini-

ical events, as well as control-driven actions. Once gating event. We denote by (t: 0) the pdf of activating
stimulus is activated, a time delay must elapse before the,e harticular stimulug € Fafter a time interval spent
actual occurrence of the branching event. Referring tq, configurationi, which was entered at point This
the examples of stimuli given above, these delays can tlff’ependence onanda is quite general, and setpoints or

« the time to failure of a piece of equipment from regions in the process variables space that are associated
the last branching time with stimuli can be modeled via a dependencéjdh 0).

« the time t tuati ¢ tection devi We also definéf (t; 1), probability per unit time of hav-
€ time 1o actuation or a protection device, €.9.nq 5 time delay before a transition between dynamics
due to mechanical inertia, or the diagnostic t'meandj if stimulus F was activated at point, and
taken by an operator before performing an a.ctlor],]ip(t; U)_:.Zj#i hE(t; a), pdf of_ 'ghe delay before leaving
* the delay before the appearance of a spark triggedynamicsi in the same conditions.
ing the explosion once the ignition criteria are A transition between plant configuratiomsand j,

Let F be the set of stimuli to be accounted for in the

satisfied through the event induced by stimuleswill occur at a
« the time elapsed between the occurrence ofacoﬁr;-?;%a%eiﬁ‘t’;eem andte + dt= after enteringi with a

ditioning event and that of the conditioned event

» agrace delay before the actual damage occurs and e ~ ~
during which other events like protection actions thJ fif(m; 0)hf (te = 7:6i(7,0)) dr
can be expected. ¢
if no stimulus other thafr comes into playsee Fig. 1
hen releasing the latter restriction, we can define a

to model for instance the operator’s behavior after th ime 7¢ associated with the occurrence of the event in-

system has crossed a setpoint. The Ref. 4 treatment $ced by each stimuluS € 7. Then, the event associ-

based on the assumption that the dispersion of these led withF will cause the branching fromto j in a time

. “Ihtervaldt aboultt if tg lies in[t, t + dt] andif tg > tg for
lays aboqt thelr.mean value was s_maII. BUt’. the ma“J:JaII stimuli G # F and all transitions out af. The proba-
hypothesis consists of performing this uncertainty analy; ility o (t:0) dt of this situation is then such that
sis on the paths of the continuous event tree that hat& Y Gy (4
been identified with no delay®r no variability in the t
delay9 in the transitions. This amounts to limiting  af(t;0) = f fif(r;0)hf (t — 7;Gi(7,0)) dr
the competition between events to the comparison of the °
times necessary to reach the different setpoints respec- t v

[1—] dt’f dr f,6(7;0)
[0} o

These times are usually random.
Random delays of action are accounted for in Ref.

tively associated with them, no matter how long the de- x I
lays are. G#F

When considering the branching time as the sum of
atime to stimulus activation and a delay, competing events X he(t" — 7 6; (T,U))} . (16
are dealt with in a more satisfactory fashion. Indeed,
from a given point in the event tree development, the
next branching is associated with the event displayin
the smallest total time until its occurrence, i.e., the tim
to the activation of the corresponding stimulus plus the 1. We assume that all stimuli correspond to set-
subsequent delay. In the peculiar case of two setpoirgoints and that the distributions of the delays are inde-
transitions in competition, the first setpoint to be crossegendent of the process variables. k£t 0) be the time
could be followed by a rather long delay, enabling thenecessary to reach the setpoint associated with stimulus
plant's representative trajectory in the process variableg in dynamicsi and starting fromi. We can then write
space to reach the second threshold, associated with a
possibly much shorter delay, which could elapse before fi®(t;0) = 6(t— 7°(0)) VG (17)

To illustrate these concepts, let us consider some
articular cases:

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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ff (@) hi(tr — 7,Gi(7,4))

0 T tr

[ T |

1 1 1

U (7, @) 9i(tr — 7,5i(1,0)) = gi(tr, 0)

| | |

1 1 1

entering stimulus occurrence
configuration ¢ activation of event i = j

Fig. 1. Two-phase occurrence of tReinduced event.

and thus 0, to reach the border of thjéth regionM; visited by the
Fren e system trajectory in the process variables space, given

gy (t;0) = hij(t — 77(0)) these regions are ranked in the order they are entered

o . o along the process variables evolution in dynamicl

X JT [1-HS(t=r@)-6(t—7°(@)] ,  we assume that stimult is instantaneously activated
GF when entering a region, we can write

(18)
fif(t;0) = b, 8(t — 72(0) + (1 — af,) af, 8 (t — 71%(0))
I whereHS(t) is the cumulative density functioedf) of M ' M 2
the delay associated with stimul@in dynamicsi and +(1-q5)(1—qf.)qh.8(t — r5(0)

0(t) is the Heaviside stepfunction. Expressids) high-
lights the competition between the delays following the n

activation of the stimuli after deterministic time inter- + .-+ ]J@- af,) -6(t — tap) (20
vals. TheF transition betweem andj will take place in j=1

[t,t + dt] only if the delays associated with all the tran-
sitions corresponding to the other stimuli lead to large
sojourn times in configuration

with 7+1(0) > 7 (0), Vj. One can observe that this
expression is a generalization of the two previous cases
given in Egs.(17) and (19). A more realistic modeling

2. A second example that can be envisioned is thatould consist in taking a uniform distribution within each
of a protection device whose operation is solicited whemegion. Setting\7§ (0) = 7{..1(0) — = (0), we have
a setpoint is crossetstimulus F) and that presents a .
probability ps to fail on demand at this time. This situa- _ Om, _ _
tion can be modeled by assuming that a fracppaf the i (t0) = ATE(Q) 0(t = 71(0)-0(ri2(0) — )
stimulus activation probability is rejected at a timg, "
which is an upper bound of the accident duration on (1—- o) a5
which the PSA has to be performed. Equati@i) then = —
becomes ATi5(0)

fi7(t;0) = (1—pr)-8(t—77(0) + pr8(t—tap) . (19)

By doing so, pdfi7(t;0) stays normalized, but the stim-
ulus activation can occur only with a probability-1ps
within the “mission time” of the PSA.

6(t — 75(0)6(r5(0) — t)

+ .+ ]_E_[(l_Qr\'le)'(s(t_tAD) . (2D
i=1

The important particular case of stimuli activated at

setpoints and within given regions of phase-space is the
3. Assume finally that experiments related to theobject of our companion papé.

occurrence of a phenomena show it is conditioned by Accounting for Eq.(16), Eq. (11) for the ingoing

the activation of a stimulus and provide activation prob- density in configuration then becomes

abilities q“F,.J. in regionsM;,j = 1...n, partitioning the .

phase-space. Or, consider an operator having a probabil-€0(xa it)

ity CI|5|,- to diagnose a probler when the system lies

t
within regionM;, the delay corresponding to Kiser time =>> dedU[ﬂ'(l],j,T)éS(T) + o(0,j,7)]
to action after diagnosis. How can the pdf of the activa- F j#i Jo
tion time in dynamics be built in such cases? Lef (0)
be the time required, while evolving in dynamicgom X 8(x—g(t—7,0)qf(t—7;0) , (22

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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while Eq.(10) is modified in the following way: cal perspective of this paper. A positive side effect of this
; choice is to better enlighten the competing process among
7(%,0,1) = f dedCl[ﬂ'(U i, 7)8(r) + (0,i,7)] all events likely to cause the dynamics to chafigee
v o v n Eg. (16)]. Another advantage of keeping a fully proba-

o _ . bilistic description of the branching process appears in a
Xo(RX=G(t—70)-A-PR(t—70), companion papét: A partition in cells of the region of
(23)  interest in the process variables space leads to a proba-
bilistic interpretation of the proportion of dynamic tra-
where jectories going from one cell to another, even when
t trajectories correspond to Dirac peaks.
Pi(t;0) = D, f pF(r;0)dr To conclude these remarks, let us notice that all stim-
F Jo uli are likely to be activated in any dynamics in our
t present framework. In actuality, some stimuli could be
=>> | gf(r;odr . (24)  specific to a given set of configurations. If stimulbs
Fj+i Yo cannot be activated in dynamicsthis case can simply

: . be accounted for by considering a pdf(t;a) =
Though the mathematical formulation of Eqs. XXX 5(t — tap), Wheretap is an upper bound of the accident

is somewhat heavy, they are nothing but a direct trand tion for the t ent under stud
scription of the probability of the different random pro- uration for the transient under study.
cesses in competition.

Some simplification in the interpretation of these
developments can be obtained if the probability per unit IV. INCOMPLETE DISACTIVATION OF THE

time g can be factorized, as mentioned in Sec. I1.B, and STIMULIAFTER A TRANSITION
the outgoing density can consequently be used. The cor- .
responding evolution equations are given in Appendix C. IV.A. Stating the Problem
111.B.3. Remarks As mentioned before, the main consequence of the

semi-Markovian framework we have adopted up to now

The preceding developments have allowed us to ads the “regeneration{i.e., disactivationhof all stimuli as
count for the delay following the activation of a stimulus soon as a new dynamics is followed.
before the actual occurrence of the event’s inducing a This assumption does not always hold. Indeed, some
change of dynamics. This transition time appears thus avents are due to occur some time after the activation of
the sum of two random times, hence, the convolutiorthe corresponding stimulus no matter which state the
products introduced from Eq16) on. The competition system lies in. Consider for instance the following situ-
between events is also embodied by Elf), where the ation: A setpoint crossing has triggered the stimulus for
process corresponding to the shortest total transition timghe intervention of a safeguard system, but an unrelated
(activation+ delay is the one responsible for driving hardware failure, not affecting the safeguard itself, pro-
the system toward a new dynamic evolution. Let us howvokes a change of configuration before the end of the
ever mention that the semi-Markovian framework thatdelay associated with the protection device actuation.
has been used induces the following consequence: THeée dynamics is clearly modified, but without prevent-
entry in a new dynamics is a regeneration point for theng the protection action from taking place soon after.
stochastic process describing the system evolution. Imhe corresponding activated stimulus was therefore un-
practice, this means that all stimuli that are activated aaffected by the hardware failure. The change in dynam-
the time of the transition are disactivated once the nevics between the activation of the stimulus and the actual
configuration is entered. Releasing this limitation is dis-occurrence of the event is only likely to have altered the
cussed in Sec. IV. distribution of the time delay. Other practical examples

One could also wonder if a stochastic modeling forof stimuli keeping activated after a change of dynamics
the activation time of the stimuli is mandatory. In manyare given in the illustrative application treated in Sec. V.
practical situations indeed, this time is deterministic, be  This means that the semi-Markovian restriction in
it the entry in a new dynamics or the crossing of a setour previous developments has to be left aside in order
point while following a given dynamic trajectorgsee to include such circumstances in the theory. Let us then
examples in Sec. I1l.B)2 Even if there is some possible try to formalize the problem. Lef(3 F) be the subset of
randomness in the position of a setpoint, this could beall stimuli that have been activated at the time the cur-
accounted for in the distribution of the correspondingrent dynamics is left because of the occurrence of the
delay. Though the pdf'§ will often reduce to a Dirac event induced by stimulus. The latter is of course dis-
peak, thereby bringing some simplifications in the ex-activated as well as some @jut not necessarily althe
pressions abovEsee, e.g., Eq(18)], we chose to keep stimuli belonging toS/{F}. In the new dynamics, the
the developments as general as possible in the theorestimuli that were disactivated could be treated as before

NUCLEAR SCIENCE AND ENGINEERING VOL. 150 JUNE 2005
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since they were “regenerated” by the transition. As fothat the delay elapsing is considered framin both
the stimuli that have stayed activated, and that form aynamicsj andi. ~

subsetA of S, the distribution of the remaining time Considering now the conditional ptf of the resid-
delay before the occurrence of the event they conditiomal delay associated with stimul&sthat remained acti-
should now be considered. This implies that some inforvated after the transition to dynamicsve have, setting
mation on the history of the system since their activatiom\rg = 7 — ¢,
should be kept in memory. We then see that the problem

becomes non-Markovian as soon as at least one of the RF(At|ATe) =
stimuli in S/{F} keeps activated after the change in ' F
dynamics.

hf(t—7e;) =i, 7)
1-— HjF(ATF)

hf (At + Are)

IV.B. Conditional Density = 1= HF(max(0,A7)) (26)

of the Residual Delay

i ) N - if At =1 — 7 is the time that has elapsed since the entry
Let us first establish the conditional plif of the  f the system in configuration(see Fig. 2 Indeed, the
delay following the activation of stimulus, given that  actyal delay before the occurrence of the event triggered
the latter occurred before the entry in configurati@nd by the activation of is At + A7g, but the corresponding
givenF remained activated after the transitionito distribution must be truncated up 2o+ i.e., it must be
Let 7 be the time at which configurationwas en-  congitioned to the survival of the stimulus activation
tered by the system, with process varialileandre <7 qyring the time interval required to enter the new con-
the time at which stimulus € A was activated. _ figurationi. A general expression of the conditional den-
We will consider different situations corr_e_spondlngsity has been given in Eq26), also valid for the case
to different types of delays that can be envisioned. Wgyhere; < 7, for which the original delay pdf is ob-
will first concentrate on the simple particular case whergained. As activations before and after the last change of
thg delay densﬂy_depends only on time. Let us thgn f'rSEIynamics are to be mixed in our problem, this condi-
build the unconditional pdh® of the delay associated (jona| density function can thus be used in both cases. It
with a stimulusF, activated atr in configurationj, with  yj| ajways be considered in the sequel of this section.
a transition to configuratiom occurring at timer. We However, before considering more complicated de-
have pendences of the delay pdf, we can shortly discuss the
hF(t— 7] —i,7) hypothesis of time continu_ity of the dela_y, before and
after the change of dynamics, that underlines the devel-
hf(t—7e) frest=1 opments made so far. Indeed, assuming that the delay
keeps elapsing in the same way after the change of dy-

F(t —

—{ (1= HF(r — 7¢))- _hitze) (25y  namics, while the pdfis modified, could be questionable.
: 1-Hf (7 — 7¢) An even stronger assumption would be the renewal

ift=r . of the delay elapsing; i.e., the reference time for the de-

lay after the transition is the transition time itself. In

The second line of Eq25) is deduced from the such a case, there is no need anymore to envision a non-
following reasoning. The delay will be greater thanr 7=  Markov treatment of the problem, as any stimulus that
if it is not elapsed in configuratiop i.e., with a proba- remains activated after a transition can be considered
bility 1 — H (7 — 7¢); the pdf of the delay in dynamics disactivated, and immediately reactivated after the
i has then to be used, conditional to the fact that théransition.
delay is greater than — 7. Writing this expression is Another approach would then consist of assuming
possible if one assumes that the transition frpto i that the delay will elapse in dynamics based on the
does not modify the reference time for the delay, i.e.hypothesis that the probability of having the delay elapsed

At
T ATp T t
[ T ]

configuration j configuration 1

Fig. 2. Time line for the residual delay after a transition.
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must be continuous before and after the transition. Ims long as the componenty,(t, 0) of the system trajec-
other words, the reference time after the transition shoultbry is monotonically increasing. In the latter expre@
no longer berg, but7g, in such a way thaijF(T —Tg)=  Sion, gy is the time derivative of thep component of
H (r — #¢). This amounts to assuming that the totalvectorxin dynamics. If we now assume that staitevas
probability of a delay longer than the time intervat 7= entered after a transition that does not disactivate stim-
up to the transition is unaffected by this transition. ulus F, and if the monotonic behavior qf is still ob- @
If the delay pdf is unaltered by the transition, we served after the transition, we have for the conditional
will have of courserg = 7. In general terms, however, density of the delay

we will have, instead of E(25), £(gn(AL 0))- | Go (G (AL, 0))]
. ip ' I MYip\Yi )

hF(t—7e;j —i,7) hf(at;0) = 1= F(g,(0,0) . (3D

hf(t—7¢) fre=t=r _ ] ) B
. _ yvhereF(p) is the cdf asso_c!ateq with( p) andgip(Q,u_)
={ (1= HF(r — 7)) hi (t — 7¢) (27) is the val_u_e opat th(_a transition time. No_te that this time
! UL - HF(r - ) the conditional pdf is independent of since the event
—hF(t—7) ift= induced byF occurs at a given position in the process
! F =T variables space and not explicitly at a given time. In this
with case, we can keep the semi-Markov treatment developed
in Sec. IV.A provided some adaptations are brought. e
fe=7—(HO)(H (r — 7)) (28)  stimuli that remain activated after a transition are as-
sumed to be disactivated at the transition time and im-
mediately reactivated after the transitigherefore with
a corresponding pdfF(t;0) = &(t) in the new state],

continuity in the sequel of this section. . S . .
o : with the distribution of the delay being given by Eg§1)
A second situation of interest corresponds to a dela h the new configuration.

density displaying a time dependence either along a dy- When the assumption on the monotonic evolutior{@f

namic trajectory or within a given region of the process (t,0) is released, the situation becomes more compli-

variables space, i.e., with (t;0). This could for in ated, as Eq(30) is no longer valid as such. The treat-

stance be the case in a level-2 accident, when an eXplﬁient that then needs to be done is similar to that which

:;?sézléle?s p;%f:rg dtgidzcipz V&'gge ;%Z'élgigtggtw% atL as performed in Ref. 19 for the determination of a mean
y timator of the failure probability in the Monte Carlo

occurrence of a spark has to be elapsed before leavi ' . o e
the ignition zone. Then, r%Q?Smulatlon of a dynamic reliability problem with distrib-

uted safety borders. Assume thgi(t,0) is increasing

hF(At + Are;af) up to a maximump* € [ Pmin, Pmax]- AS soon as the
1= HF (max(0, A ) 0F) (29 value ofp starts decreasing aftgr, the probability of

the event occurrence vanishes if we suppose it is associ-

whereaf is such thatd = g, (Ar,0F). For A7 > 0, ated with a first passage at a given valuepoT his ob-
vectoraf is thus not the value of the process variables agervation is valid even if no change of dynamics took
the time stimulug= was activated since this occurred in place. The system has then survived this first entry in the
a configuration different from, associated with a dy- supportoff (p) on[ pmin, p* ] with a probability 1— F(p*).
namic evolution that is notj. Yet, af appears as a [f the system reenters the supportfgp) later on, it is
virtual initial condition for the dynamic evolution in con- impossible for the event to actually occur belpty again
figuration i, with respect torg, and leads to the true With the assumption that the event occurrence is associ-
trajectory afterr. ated with a first crossing of a value @f Above this

In a third possible case, the triggered event has alue p*, the event can then take place at a level in
nonzero probability of taking place in a given region of[ p, p + dp] with a probabilityf (p) dp/(1 — F(p*)). A
the process variables space, and the delay expresses oifnple way of modeling this case consists of the follow-
the time required to reach a given point in this zone. IriNg steps:
order to obtain simpler mathematical expressions, let us . o . .
assume that the event associated with stim&lescurs * disactivation of the stimulu§ when the maxi-
for a value of the process variabpewithin the range mump” is passedsee Sec. IV.E
[ Pmins Pmax], With @ probability density (p). The stimu- « reactivation of whenp* (and nofpm!) is reached
lus was activated when crossing the setpoint at the lower again
end pmin Of the support off (p). The distribution of the

with (HF)~! denoting the inverse of functiad (t).
We will however keep the assumption of the time

hF(At;alATe) =

delay in staté relates tcf (p) according to « use of a conditional distribution for the delay, sim-
ilar in form to Eq.(31), but with respect to level
hf(At;0) = f(gip(At,0))-|Gip (G (AL, 0))] (30) p* instead ofp.
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IV.C. Non-Markov Treatment of pre(t;r* 7,0 74,.A) dt
Stimulus-Driven Branchings
_ f,F(t_T,U) dt l_FlH(t_T,U)
- _ EF o e : _EH E I
IV.C.1. Probability of a Next Event 1-F(r" =70 HeA 1-F(r" =m0

The semi-Markov framework in Sec. lll, and its in- 1— HE(t— 7;0|A7g)
herent property of disactivating all activated stimuli each < 11 1— AS(r* — r:0|A7g) (32
time the dynamics changes, allowed us to model the sys- oA ' ’ ¢
tem evolution while referring only to the entry in new wherea is such thatd* = g;(v* — r,0). Note that we
configurations. Once activated stimuli can survive thehave willingly kepta* in the arguments op™*, even
transitions, one could think of generalizing the “disacti-thoughu is the only value of the process variables ap-
vation + instantaneous reactivation” trick that we sug-pearing on the right side of E¢32). The reason of this
gested at the end of the last paragraph: For all stimuliotation appears more clearly in our companion paper.
belonging toA4, the density of the activation time in the All activation and delay elapsing processes are to be
new configuration would reduce to a Dirac peak, whilemade conditional to the occurrence of the last event at
the delay would be distributed according to one of ther*, such as in system engineering for non-Markovian
conditional pdf’s presented in Sec. IV.B; these resultsomponent8®-2?The interpretation of Eq32) is straight-
could then be introduced into E@L6), and the semi- forward: It is the probability that stimulus is activated
Markov approach would be formally conserved. In do-after a timet — 7 in dynamicsi, conditionally tot > 7*,
ing this, however, we could not keep track of the activationwhile no other stimulus is activated and while no event
times of stimuli that would be activateafter entering induced by an already activated stimulus takes place on
the present configuration and that could remain actifr*t]. We assume that the updating of séfollowing
vated after the next change of dynamics. We thereforéhe activation ofF automatically implies that of vector
have to consider separately two types of events, whick .
are to be handled at the same level, since none of them As for case 2, we consider the probability that the
can any longer regenerate the system: event triggered by the activated stimuksvill occur in
[t,t + dt] and bring the system in dynamigsunder the
« the activation of a new stimulus € F/A, before  same conditions as above:
the end of the delay associated with any of the Eren v cx =
stimuli G € A (case 1. After its activation,F is Py (G777, 0%, 70, A) dt

added taA. hf (t — ;0| Are) dt
« the occurrence of a new stimulus-driven branch- © 1-HAF(r* — 7 0]ATe)
ing before any new activation, with the delay as- ~G o
sociated with a stimulus of4 being elapsed x T1 1_1'“ (t—7;0]A7g)
(case 2. Gea 1= HE(r* — 7;0]A7g)
G#F
In the following,7* denotes the time of occurrence 1-F1(t— 70
of the last event, either a change of dynanfie$ = 7, x 11 (33

_ EH ¥ e .
time at which the last configuration change took place at ga L= FR(r" —70)
point 0) or a stimulus activatiorit* > 7), which took The reasoning leading to E€33) is similar to the

place atd™; 74 is a shortcut notation for the times of ,,.ayious one. Note however that the probability per unit
activationrg of all G € A. SubsetA has to be enlarged 'Ei)meﬁijF(T* — 7:0|Ar¢ ) is conditioned b?/ + |_~|iF(T¥E -

each time case 1 is metand updated in case 2. ltmustbgx ) i e. by the complement to the whole cdf. Indeed,
highlighted that because of case-1 eveutsyill contain the transition to dynamigsin [t, t + dt] is chosen, given
stimuli that were activated before entering the curren,, change of dynamics, whatever the next configuration
configuration and stimuli that were activated afterward 5,4 \vas caused by stim’uIEsbeforer*. Expression33) ’
We will howe\(er keep the tiId_ed nptations for the pdf’s 1, stbe complemented by alogical operap.A — A’)

of the delays in both cases since in E@%), (29), and  gying the set of stimuli that keep activated after the tran-
(31), the denominator must not be considered whefjiiqni s j due to theF-induced event. In most cases,

TF > T is a subset ofA.
In case 1, the probability thaf will be the next #

stimulus to be activated, in configuratianand in
[t,t + dt], before any other event occurs, given the sub-
setA of stimuli having remained activated after entering ~ Most bricks necessary to adapt the previous evolu-
i, is written tion equation of the ingoing densifgee Eq.(22)] are

IV.C.2. Evolution Equations
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now available. Yet, we must still introduce two different
ingoing densities, associated with each type of next event
that might occur, respectively. Before doing this, we can
observe that the future evolution of the system is always
conditioned byn 4 + 1 reference times ifi 4 is the size of
setA. These reference times are the activation times of
all stimuli belonging to.A, and the entry time in the
current dynamics. When a new stimulus activation takes
place, additional time has to be kept in memory, with
all other reference times being unaltered. In case of a
change of dynamics, the entry time is of course updated,
while some activation times become irrelevant if the
corresponding stimuli do not remain activated after the
transition.

Let us then define the two ingoing densities that
describe the system evolution. We make them explicitly
dependent on the current timethought has to take the
value of one of the reference times mentioned above f
the densities not to vanish. We thus have

* oin(X,]j,t,74,4), ingoing density in dynamigsat
pointx and timet, with a setA4 of stimuli activated
at 74 and remaining activated after entering the

possibility of additional activations caused by the
transition,t is an upper bound of all the compo-
nents of vector 4.

or(X,j,1,7,74,A), density of activation of stimu-
lus F in dynamicsj, at (X,t) for an entry inj at
time 7, this activation resulting in a set of acti-
vated stimuli(i.e., F € A). In this caset is of
course thé- component of 4, andt > 75, VG € A,

G # F. Therefore, mentioning in addition to7 4

in the arguments ofr is redundant, but it is kept
to make an explicit reference to the last activation
time. Yet, this activation density will have to be
used systematically with a Dirac peak
8(t — 7¢), when variableg and = are treated
independently.

0Iji'ollowing the remark made on the inclusiontef 7¢ in
the arguments opg, it must be noticed that both densi-
ties have the same dimensions, for a given size ofiset
i.e., the inverse of the dimensions xftimest ~#A+1),

If as beforer denotes the entry time in dynamitcs

new configurationj. If we do not consider the and7*, the time at which the last event occurred, we

have

QDin()_(;jnty?A.A)

t ’T* T* T*
= E 2 2 dl]f dT*f de f d?.A’/AS(X_ gi(t_ ’T*,U))pilj:(t;T*,T,U,?_A/,A,)

A'DA FEA" i#]

X [gpin(U, 75T, A8 (T — 1) + Z oc(O,i, 757,74, A" )S6(7* — TG)} 5{(./4’ — A) . (34)

GeA’

Indeed, the entry in configuratigns possible from any configuratianin which an already activated stimul&scan

induce the transition— j either if the previous event was the entryi ior if it was any of the stimulus activations that
took place ini. Vector7 4 is updated by conserving the components pf corresponding to the stimuli belonging to
A. Since the actual activation times of the stimuli belonginglta4 do not need to be accounted for after the change
of dynamics, the contributions tg, (X, j,t,74,.4) have to be summed up on all possible values of the components of
T a,.4, hence this multiple integral. We then see the dependence of the dimensions of the ingoing density on the size
of setA.
As for the density of activation df, we can write

¢F(X’j1t1Tl?A+{F}iA+{F})
t
= fduf dr*8(X—g(t—7*50)p *(t;7%7,0,74,.4)

X |:[7T(U,j,7')5(7')6¢4'@ + QDin(U,j,T*,?A,A)]B(T* - T) + 2 QD(_;(U,].,’T*,T,’?_A,A)B(T* - 7-G):| ’ (35)

GEA

where( is the empty set. The second and third terms in the main brackets on the right side(85Hgad to an
interpretation similar to what has been done for 84). One should notice however that an activation is always the
first event to take place after the transient initiation if we assume that no stimulus is initially activated, hence the first
term in these brackets. Vect@y, is updated by adding to it the activation time=t.
NUCLEAR SCIENCE AND ENGINEERING
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The probability density in statiethen is written
7 (X,i,1;A)

t T>:< ’T* ’T*
= fdu*f dv*f de f d748(X— Gi(t— 750%) (L — P,(t;7% 7,0% 74,.A))
(o] o o o

X [[w(u*,j,r)a(f)aA,@ + (01,75 74, ]S (r* — 1) + FZA o (U1, 7% 7,74, A) 8 (7" — TF)] . (36)

wherePi(t; 7% 7,0% 74, A) is the probability that the next
event in dynamics will occur beforet, provided the last took place. This situation is forced to occur in the semi-
event took place dtr* 0*), dynamicd was entered at, Markov framework, while disactivation rules are to be
and the stimuli belonging tel were activated af4,. We  introduced in the non-Markov treatment to define which

have stimuli keep activated after a transition between system

e ko states.
1=PRGr 70570, A) However, stimuli are likely to be disactivated once
_AG(t — i the process variables cross a setpoint or enter a given
1 Hi (t T, U| ATG) .

=11 ST - region of phase-space, even though the system keeps
Gea L= HE(r" — 7;0|ATg) evolving in the same dynamics. Such a circumstance can

1— FH(t—70) be encountered when modeling combustion processes in

x I] ‘ ~4 (37) PSAZ analyses. The combustion stimulus is activated

hea 1—FR(r*—7;0) when entering a flammability region, but no ignition will
take place if the delay following activation is larger than
the time taken by the system to exit the flammability
zone.

Having now developed the non-Markov theory, we
can propound a way of modeling the disactivation of

changes in the value of process variables that can take@nd assume the pdf of activation Bfis identical to
place at a transition time between two dynamics. As merthat of disactivation of (note that this last pdf cannot
tioned in Sec. Ill.A, the methodology roughly amountsP€ handled in our theoyyIn the combustion example
to averaging the evolution equations of the problem ofnentioned abovek: will be activated when the system
the distribution of random shock variables determiningdoes out of the flammability region. A nil delay is asso-
the magnitude of the jump in the process variables valu&iated with the= event that we still need to define.ils
For this reason, coupling this feature with the stimulusihe current dynamics, this event is a transition froto
driven branching process is direct. itself. In other words, thg actlvat_lqn wa_lll bg instan-

However, this instantaneous modification of the pro-taneously followed by this transition fromtoi. _
cess variables value is likely to bring the system on the _In the non-Markov treatment, we can associate dis-
other side of a setpoint corresponding to a stimulus ofctivation rules to this transition. In this caseand F
within a region where a stimulus can be activated. Thavill be disactivated, while all other stimuli that belonged
system could also exit a region where a stimulus remain® the set before ther-induced transition remain acti-

B activated(see Sec. IV.E The occurrence of these situa- Vated afterward.

tions depends on the value of the shock variables asso-
ciated with the jump. IV.F. Consistency of the Stimulus-Driven

In the semi-Markov model, some stimuli can then be Approach
directly activated when entering the new dynamics, de- . . .
pending on the magnitude of the random jump under- Though the final expressions in both forward and
gone by the continuous variables. In the non-MarkoPackward cases are rather complicated, they are ob-
case, the logical function&jF(A — A’) are to be made ta_u_n'ed py mtroducmg successively new modellng capa-
dependent on the value of the process variables befopél't'es in the classical TPD. In order to verify that the

and after the jump, or alternatively on the shock vari-vell-known theory of dynamic reliability is a particular
ables and the procéss variables before this jump case of these new developments, we can trace back the

different assumptions brought into the theory and show

IV.E. Disactivation of a Stimulus Without that_ we find ggain the classical TPD. This can be done

Change of Dynamics for instance in the forward case, where the use of two

ingoing densities makes it not obvious at first glance to

Until now, we have assumed that activated stimulicheck the coherence of the stimulus-driven approach with
could only be disactivated when a change of dynamicthe C.K. equations.

where agairo* = g;(7* — 7,0).

IV.D. Disactivation Rules and
Random Shocks
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Let us first assume that no stimulus can remain activated after a change of dynamics. In mathematical words, we
havesf (A" — A) = 64 o, for each transitiom — j induced by eacl¥. This means that the dependencepgfin A
is irrelevant since it could only depend on the empty@etind we will no longer mention it. In this case, E§4)
becomes

enZiD=3 33 dUJOth*f:drf:...JOT*d?-AB(X—gi(t—r*,u))

A FEA i#]

% pi'j:(t;T*,T,U,?A,A)[ S 0a(0,i, 7% 7, 7ay A)S (7 — TG)] . (38)

GeA

Indeed, the entry in a new dynamics asks first for at least one stimulus to be activated, and the contrilagtion of
the integral of Eq(34) disappears. As for Eq35), it now takes the following form:

o (X )4, 7, T4/, A +{F})

= 6A,@fdu [77(01117-)6(7) + qu(L_],j,’T)](S()_(_ gj(t - T,U))ij*(t;T,’T,L_],’?_:@,@)

t
+ E duf dT* ¢G(Ulj17*1Tl?AlA)8(T*_TG)a()_(_gj(t_T*lU))ij*(t;T*lT’Ul?AlA) . (39)

GeA

Introducing then Eq(39) into Eq.(38), we obtain

qom(x,j,t)=22fd0f dr [7(0,i,7)8(7) + ¢in(0,i,7)]8(X — G (t — 7,0))

F i#j

t
X |:J dTF piF*(TF;TlTvuv?ng)pi'j:(t;TF!Tlgi(TF - T!U)vTFv{F}):|

t TG TG TG TG
+335 S S faf o [Tas| [ Tarue
A FeA i#] GeA HeA/{G} o o T o o

X QDH(G, iIS!TI?.A/{G}vA/{G})S(S_ 7-H)(S()_(_ GI(t - S, u))

X pP*(16;5,7,0, ?A/{G}-A/{G})pi'j:(t;TG:T: Gi(7c —s,0),74,A) . (40)
Using Egs.(32) and(33), we can evaluate the integral appearing in the first term of Egs. XXX: a

t
| dr b 7,070, 0B (7,7, 60 = 7,07 ()

= ft fF(r* — T;U)hi'j:(t — 756 (" —7,0)dr* X H 1-FS(t—-r7;0) . (41)

G#F

The interpretation of Eq41) is straightforward as it gives the probability per unit time of a transition due to the
F-induced event between configuratianandj after a timet — 7 if no stimulus other thafr is activated on this time
interval.

We can also see that the introduction of E8P) into the last term of Eq(40) leads again to an integral of the
activation density and to two terms: one is again associated with the initial probability density and the other one with
the ingoing density, but both correspond to the activation of two stimuli on the time interval considered, one of which
induces the event responsible for the change of configuration. The subsequent substitutions of the activation density
with Eq. (39) give the development of E16) with respect to the number of stimuli activated at the time the first
delay is elapsed, i.e.,
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i (t;0) = f fif(r;0)hf (t — 7; G (7,0)) dr GHF {1—[ dt'f dr fS(r;0)hE(t’ — 7; 6 (7,0))

- [ Fmoni-noroar

X { [Ta-retap+ > tfiG(T;U)(l— HS(t — 7,6 (7,0)) dr

G#F G#F Jo
x Il a-r@op+ > > ] . (42)
H#F,G G#F H#F,G

Therefore Eq(40) becomes equivalent to E(R2).
We have thus shown that by suppressing the possibility The evolution equation for the containment pressure
for stimuli to remain activated after a change of dynam-s written
ics, the forward non-Markov treatment of Sec. IV.C re- dp
duces to the forward semi-Markov theory given in _

Sec. II.B.2. Further simplifying the problem, we can dt Oty —t) — x,P-6, (45)
now assume that there is no delay in the realization of an
eventinduced by the activation of a stimulus. This meansheref, is a Boolean variable changing its value from

that 0 to 1 once leveP, has been crossed. Constanendk,,
o are such thaP? < P¢ < ¢/, by assumption.
hi (t;0) = pe(i —j[0)-8(t) . (43 The possible dynamics of this system are thus
Consequently, Eq.16) takes the following form: e dP/dt=c (i = 1) as long as the combustion goes

. . o on before the valve opening or the rupture
o; (60) = FiT (WP (i = j|gi(7,0) , o
e dP/dt = o (i = 2) when the pressurization comes
x T [1- F&(t:0)] (44) to an end before any other event

G#F « dP/dt = ¢ — «,P (i = 3) when the relief valve is

which highlights the simple competition between stimu- opened before the end of the combustion process
lus activations. If the competing processes in Etfl) « dP/dt = —«, P (i = 4) when the pressurization is
now correspond to the different possible transitions out stopped after the valve opening.
of dynamicsi, we find the classical semi-Markov form
of the TPD. The stimulus-driven theoretical extensionsror convenience, we also define a fifth absorbing con-
are thus consistent with the previous theory. figuration, corresponding to exceeding leeand where
the dynamics becomes indifferent since it is associated
with the containment rupture. Note that the latter situa-
V. ATEST CASE tion can be reached only either from configuration 1 or
from configuration 3 provided the valve opening takes
place atP, < ¢/k,. Indeed, with this condition, the pres-

V.A. Problem Description . S - .
sure keeps increasing in dynamics 3 according to

In order to illustrate the previous developments, we
consider in this section a basic model for the pressuriza- t—t = 1 In (C_—KUPU> (46)
tion of containment, which is caused by an inner com- ! c—«k,P(t|R,) /)’
bustion whose duratioty, is distributed according to the
pdf f,(t4). The correspondindinear pressure rise can wheret, is such thaP(t,|P,) = P, = ct, in dynamics 1;
be mitigated by the opening of a relief valve, at a presP(t|P,) reaches an asymptotic limnf, = c/x,.
sure leveP, distributed according t6 (P,). The support
of this distribution is[P?, P;"®]. This valve should V.B. Analytical Estimation of the Probability
avoid a catastrophic rupture of the containment taking of Catastrophic Rupture
place atP = P., whereP; has a pdf.(P.) on the interval
[PS,PI®]. Capital letters will be used as usual for the Following the discussion on the possible accident
corresponding cdf’s. situations made hereabove, we can separate two cases

v
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and therefore writé?(t), the probability of contain- Pe .
ment rupture as a function of time, as the sum of twd>(t) = | dR f,(R)-0(P(t|R,) — P?)
contributions, corresponding to the system evolving in v
dynamics 1 and 3 when the rupture occurs, respectively: P(t|R)
X f ch fc(Pc)'(l - I:H (tc(Pc|Pu)))
Prupt(t) = P1(t) + Ps(t) . (47) Pe
c/k, Pv
V.B.1. Rupture Threshold Exceeded + f dP, fU(PU)~0<t - —)
in Dynamics 1 at Time Pe c

S . : . P(t|P,
This situation requires the simultaneous occurrence y f (1R

of three events: dR. fo(P)- (1 — Fu(te(P[R,)))

Pl/

» The combustion time must be larger than Pe
= [ ar t.R)-0PaIR) ~ PO
e The relief valve is not yet opened at the rupture P?
limit P.. PP,
» The time elapsed since the beginning of the tran- x fp AR fo(Pe)- (1 = Fu(te(Re[R.))
sient must be large enough for the pressure to have ‘

reached?; in dynamics 1. PO\ [min(e/xu.ct
+o0|lt—— f dp, f,(R,)
Averaging the probability of this intersection of events €/ Jre
over the distribution of., we obtain forP,(t) P(t|P,)
X f dpc fc(Pc)'(l_ I:H (tc(Pc|Pv))) ’

P,(t) = fppaxfC(Pc).<1— F, (5)) &
po c (50

whereP(t|P,) is given by Eq.(46).

P
X (1—FU(PC)>-9<t——°>ch (48) o
C V.B.3. Event Tree of the Pressurization Case

since the pressure in dynamics 1 is linearly increasing, The possible evolutions of the system are summa-
starting fromP(0) = 0. rized in the event tree presented in Fig. 3. It should be
observed that

V.B.2. Rupture Threshold Exceeded » headers are defined on both process variables and
in Dynamics 3 at Time uncertain parameters

* the transition between discrete states 1 and 3 can
lead to completely different outcomes, depending
on the value of the uncertain parameters.

The valve opening, causing the transition in this state
from configuration 1, must take place at a pressure level
P, < c/k,, in order to keep a positive pressure derivative

in dynamics 3. . _ Such characteristics cannot be dealt with using clas-
The combustion duration must again be larger thagjca| analysis techniques. Section V.C displays how the
the timetc(P;|P,) to reach the rupture pressifg given  gtimulus-based framework is capable of treating this

P,. From Eq.(46), ty must satisfy problem.
1 C— K, PU i [ i -Dri
> LRIR) = Lt In< K ) V.C. Application of the Stimulus-Driven
) c—r P K, P, Approach

= 1 cx First, we would like to underline the illustrative pur-

=24 = In<#> . (49) pose of this treatment for the present problem. Indeed,
- the analytical expressions given in Sec. V.B are gdfle

easily deduced from the analysis of the potential scenar-
Rupture in dynamics 3 also implies thHRt< P.. ios, while the introduction of the concept of stimulus
To state more clearly the condition on the minimumbrings more complexity in the developments below. This

time required to attain the undesired event, we split theection has thus to be considered as a proof of the co-
cases wher@, = P¢ andP, = P2. Then, herence of the theory, the utility of which fully appears
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pressurization lasts c
longer than time to P,<P | |P< —||ta < te(Pe|Py)
reach min(P,, P,) v
safe (i=2
No (i=2)
pressurization (i=1)
- rupture (1=
starts No P
Yes .
safe (i=3)
No
Yes .
safe (i=4)
No
Yes
Yes

rupture (i=3)

Fig. 3. Event tree of the pressurization test case.

when it becomes the support of an automatic genera- In configuration 1, the distribution of the activation
tion of accident sequences and of their probabilistidcime of F; is that ofty, while the pressurization stops
assessment. instantaneously wheR; is activated:

V.C.1. Inventory of Stimuli and p’
Induced Events fu <t + —)

Let lel(t; P") =

» F, denote the end of the combustion process, which 1-"Fy (?)
causes the end of the containment pressurization

and hii(t;P”) =5(t)

. - 52
» F, correspond to the crossing of the minimum re- (52)

. 2 .
lief valve pressure thresho,, from which the if dynamics 1 is entered &' and stimulusF; is acti-

valve opening can be actuated " ) <
vated atP”. The same expressions are also valid in con-
* F3 be equivalent toF,, for the minimum rup- figuration 3.
ture pressuré’?, and the actual rupture that can  As for stimuli F, andF3, their activation times are
follow. deterministic and defined by the dynamics in the current

The distributions for the activation times and timeconﬂguratlon, while the delay distributions are the direct

delays are now to be defined in the different dynamic%r.ans'IOOSition in the time space of the pdf'siyfandP,

the system can evolve in. One can directly notice that'C€ the pressure evolution is monotonic: @
o ’

none of the stimuli can be activated in both configura- B
tions 2 and 4, what we express by writing fFo(t;P) = 8<t M - )-H(P,j’ —p)

fAt) =6(t—tap) , j=1,2,3i=2,4, (51

wheretap is an upper bound of the accident duratisse  2"d

Sec. lIl.B.3. The pdf of the delay is irrelevant in these .
cases. hy?(t;P") = cf,(P” + ct) (53
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fla(t;P") = 5(1: - ; )-e(Pg -P) o(P5,1) = fw(P’,l,o).a(P — P’ —ct)-qi(t; P") dP’
t
and + 3 f dTJdP’ o(P',3,7,4)
h(t;P”) = cf(P” +ct) . (54) A e
C C —K, -7
In dynamics 3F, cannot be activateldee Eq(51)], X 5('3 T T (K_ - P’>e o )>
while the deterministic activation of; comes from v Y
Eq. (46): X qiz(t— 1P, A)
1 c—k,P’ - — o). qFs(t
f3F3(t;P') — H(Pé’— P’)-(S(t_ _|n<L>> . 6(P Ct) Q15(t’0)
K, c—k,P¢ .
(55) + ; fo dTJdP’gD(P,S,T,.A)
The distribution of the corresponding delay is again ob- c C A WP
tained by the change of variabe— tin f;(P.); i.e., XO\P———+| ——P e
h5:(t;P") = (c — k,P")e ! X it — 7; P, A) (59)

¢ c c A where we have accounted for the initial condition
Xl - —P" et (56) 7(P’,1,0) = 8(P’) and where the sum aA is limited to
the empty set anfi}, given the physics of the problem.

Let us remark here that the definition of the stimuli We also have
is not unique. We could indeed have referred to a stim- _ _ o c_
ulus F{ corresponding to the start of the pressurization #(P3,L.A) = [0(P = P2)04 ) + 0(P5 = P)os0]
when entering dynamics 1. The delay in this latter case
would have been the combustion time. Mathematically, X JdP’ 7 (P’,1,0)
this would simply result in the permutation of the expres-
sions off,* andh[* in Eq. (52).

Ky Ky

X 8(P— P’ —ct)-qiz(t;P’)

V.C.2. Rupture Probability and =[0(P—PQ)8 4k, +O0(PS—P)S 4]
Ingoing Densities

: . . - , X 8(P —ct)-qf3(t;0) . (59)

Having defined in the problem description a fifth

configuration that is entered when rupture occurs, We\ote that there is no dependence.4rin the expression

can assimilate the rupture probability to that of being inof the probabilities per unit time of the transitions leav-

state 5, no matter what the pressure value is. As this stafeg dynamics 1 because no stimulus can be initially

is absorbing, we can write activated. From Eq(16), we find
t t pg
Prupt(t) = f dedPgo(P,S,T) ) (57) qug(t;O) = f 8(7’ - ?> -cf.(P@+c(t—17))dr
o o
Any dependence in a sed of stimuli remaining % 1_ft dt'fy (1)
activated after entering state 5 is irrelevant here. How- o H

ever, if stimulusF; was activated before a transition be-

tween configurations 1 and 3, it would remain activated R Py
after this change of dynamics. This would require the X 1_f dt f dradlr— S
full non-Markovian treatment. Yet, we have to deal with ° °

a delay distribution expressing the time necessary to reach

a given zone in the process variables domain. As men- X cf, (P +c(t’ — T))]

tioned in Sec. IV.B, the conditional pdf of the delay takes

the form Eq.(31), and a semi-Markovian frame is suffi- = c-f.(ct)-0(ct— P?)

cient. From Eq(22), we obtain the form of the ingoing

density into state 5: X (1= Fy(1)-(1—F,(ct) (60)
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and similarly
q53(t,0) = c-f,(ct)-0(ct — P?)- (1 — Fu(t))- (1 — Fe(ct)) . (61)

As for gfz, we can observe that the dependencedommounts to using Heaviside stepfunctions on the value of
the process variable, thereby allowing one to replace the sum.rnn Eq. (58) with a unique expression:

v KU

F. ' F F ¢ ¢ —
ARt P) =0(Pe—P) | f(riP))-he(t—7i— —( ——P'|.e %" |dr
(]
ro__ o _
h§3< . C—l—t—T;P(P’))

G P@)-foﬁm- TE dr

P/

t v fH ’T+?

Jefafe )
o o

1-Fy| —

”<C>

where Eq.(29) has been used for the conditional delay density in the Pase P¢. Indeed, when stimuluB; is
activated before the transition 3, the virtual initial pressur®(P’) (which was introduced in Sec. IV)Bs that
obtained when evolving backward in dynamics 3 during a time intgi®at P2)/c, starting fromP’; i.e.,

c—k,P' = (c—k,P(P)).-e P =Poel (63
Accounting for Eqs(55) and(56), we can write explicitly

(P =10(PS—P")0 t—iln ek (C—k,P")-e7 b1 S (S opr) e
Gostt: ¢ K, \C—kK,P§ o Ak, Ky

Ot —7)| (62

_ D V. a K, ([(P"—P§)/c]+1) £ _ £ _p ’ .o K, ([(P"—PR§)/c]+1)
(c—k,P(P"))-e fe P(P') |-e
Ky, K,
+0(P —P?)-
( ‘) 1-Fe(P)

b

l—FH<t+ ?>
S -

HH(?)

Using Eqgs.(58) through(64) and integrating carefully the Dirac peaks, we find the following for the ingoing
density in state 5:
¢(P5,t) = 6(P —ct)-cfe(ct)- (1 — Fu(t))- (1 — F,(ct))-0(ct — P¢S)
P2 c C— K, p’
+ f dp’ 8<P’ —ct+ — In(—)) -cf,(P")6(P—P’)-f.(P)
Po

K, c—«k,P

X

(64)

v

&/ c c—k,P’
+J dP'6|P' —ct+ —In{ ——— | | -cf,(P")O(P — P")-f.(P)

po K, c—«k,P

X (1= Fy(t)-6(P— pg).9<£ _ p>

X(l—FH(t))-0<£—P> . (65)

2

One can then easily check that the term-by-term integratiop(8f5,t) according to Eq(57) gives back the
results Eqs(48) and(50).
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VI. CONCLUSIONS whereq; (t; 0) is the probability per unit time of a tran-
sition between dynamidsandj a timet after entering
Dynamic approaches to PRA have given consideratd (see Sec. II.B
able insight into the accident sequence delineation of an  Let fj(t;0) be the pdf of the transition timie— j if
event tree by modeling more neatly how the competitiorthis transition is considered separately, andAgtt; 0)
processes between branching events are driven by tige the corresponding cdf. Then,
system dynamics in degraded working modes. However,

when the occurrence of some events is substantially de- q; (t;0) = f;(t;a)-TT (1 — Fu(t;0)) (A.2)
layed after their actual triggering, the classical theory of k#j

probabilistic dynamics turns out to fall short of the meth-

odological challenge entailed by such a situation. since the transitiom — j will take place at time if and

The theoretical extensions developed in this papeonly if the other transitions out efhave not yet occurred
aim at tackling this more complex modeling of compet-at this instant.
ing events. They are based on the concept of stimulus, The transition rate betweerandj, giveni is entered
which needs to be activated before an event can actualBt pointa, is written
occur after some delay. The next event to take place

therefore corresponds to the minimum total time neces- fi(t;0)- 1 (1 — Fu(t; 0))

sary for the associated stimulus to be activated and for o K

the delay to be elapsed. This extension of the theory was ~ P(i =, t;0) = 11— Fu(t;0)

straightforwardly achieved in a semi-Markov frame- P LA

work, but the latter restriction implies that all stimuli are

disactivated after each change of configuration. When f; (t;0)

this assumption is not satisfied in practice, information = m . (A.3)
ij (&

on the past history of the system in the transient devel-

opment must be kept in memory. A further non-Markovian

extension had thus to be realized, and both forward antjote that these transition rates are explicitly dependent
backward cases were considered in establishing the cd?l time. Moreover, the dependence on the process vari-
responding evolution equations of the process. ables is mentioned with respect to the starting point in
These theoretical extensions were shown to be fullj€ System configuration that s left and not as usual with
compatible with previous, more limited dynamic ap-respect to the value of these variables at the transition

proaches to PSA, such as the automatic generation §fne. The bridge between both notations is done by the

accident sequences based on the crossing of setpoirt§terministic evolution in.

and used in level-1 integrated PRA. A test case with a From Egs.(A.1), (A.2), and(A.3), the correspond-

fully analytical solution was also developed to displayind transition probability is directly deduced:

the coherence and capabilities of the new approach. S L
The numerical challenge induced by this advanced i > ta) = p(i —j,t;0) _ Gi (t;0) (A.4)

theory of dynamic reliability is of course even larger than Y Spi—=kta fit;a)

the one that was entailed by the classical TPD. Yet, recent K

years have shown that this obstacle could be overcome

with the development of computer technology and of apThe factorization between the distribution of the sojourn

propriate solution schemes. We believe on this basis th&itme in a configuration and the transition probabilities

an optimistic forecast can be emitted for this stimulus-out of this configuration, which is suggested in Sec. II.B,

driven approach. Anyway, it already gives a theoreticakan indeed lead to

framework from which simplifications can be made and

the quality of approximate solution techniques assessed. fi(t,opi —j,%)-6(x— G (t,0)
= g (t;0)-6(x— gi(t,0)) (A.5)
APPENDIX A _ _ o
if the ratiosq; (t; 0)/fi(t; 0) have no explicit time depen-
FACTORIZATION OF THE TRANSITION dence, i.e., if they depend on time only through the dy-
PROBABILITY PER UNIT TIME namic evolutiong; (t; 0). In this last expression, we have

used again the classical writing of the transition rate,

icsi if the latter was entered at poiat We have of the process variables at the transition time. This explicit
independence of time is the condition to be satisfied in
fi(t;0) = > g (t;0) , (A.1) order to use the outgoing density in the semi-Markov

j#i modeling.
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APPENDIX B
BACKWARD TREATMENT

B.l. MARKOVIAN BACKWARD TPD

The backward counterp&rof the C.K. equatiofisee
Eqg. (4)] is written

7T()_(1 i1t|)_(01 k'l tO)

- f[/\i(gi (s— 15, %)) ds

= 8ike o 5()_(_Gi(t_t01)_(o))

+ E p(k_>J|gk(T — 15, %))

j#Fk Y,

*f A(Gk(s—16, %5)) ds

to

X e

X 7 (X, 1,1 G(T — to, Xo), J, 7) A7, (B.1)

wherew (X,i,t|%,, K, t,) stands for the pdf of finding the
system in statéx, i ) at timet, given it was in staté€x,, k)
at timet,.

B.Il. BACKWARD APPROACH TO THE
SEMI-MARKQV MODELING OF
DYNAMIC RELIABILITY

Keeping in mind the fact that reference must be mad

to the transition between two plant configurations, we

reinterpret the conditional pdf(X,i,t|%X.,k, t,) as the
probability density of being in stal, i ) at timet, given
the plantentereddynamicsk att, with process variables
Xo. With this peculiar meaning of the conditional pdf,
Eqg. (B.1) becomes

(X, 0,1 %, K, o)
= 61— Fi(t — 15, %)) (X — Gi (t — 15, Xo))
t
+ 2| (T~ i %o)
7k Jt,
X 7 (X,1,t|Ge(7 — to, Ro),j, 7) d7 (B.2)

whereF; (t; X,) is the cdf of the sojourn time in configu-
rationi, entered ag,, associated with EqA.1).

T
| |
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B.lll. SEMI-MARKOV BACKWARD
TREATMENT OF STIMULUS
ACTIVATIONS AND DELAYS

We must now generalize E@B.2) to the case of

stimulus-driven transitions. Using Eq&L6) and (24),
we readily find

7 (X,0,t] X0, K to)
= 0ik(1—Pi(t—1t5;%,))6(X — Oi (t—1t5,%o))
t
+ EZ quJ'(T_to;)_(o)
i=k F Ji,

X 7 (X, 1,1 G(T — to, Xo), J, 7) A7, (B.3)

where the conditioX,, k, t,, which refers to the entry in
the plant configuration, relates directly to the definition
of g (t — to; Xo)-

B.IV. GENERAL BACKWARD
NON-MARKQOV TREATMENT

The backward treatment can also be applied in this
case if we use the following conditional pdf:

(X, i, t|o5 k757,74, A) , (B.4)

which is the probability density to find the system in

(x,i,1), given it underwent an evefithange of dynam-
ics or stimulus activationin statek at (0% 7*), resulting
a setA of activated stimuli, and given statewas
entered at-. Similarly to what was done in the forward
case, an explicit reference to the timeof the last event
is done, even if it will always be equal either to the entry
time 7 or to one of the components &f;.

The unconditional pdf is directly obtained from

7(%,0,1)

t t
= 2 fdu*] dq-f dr* 7 (R, i,t|05K 7% 7,75,9)
Kk [e] T

X 6(1)8(r — 7*)m (0% Kk, 7) . (B.5)

The conditional pdffEq. (B.4)] is obtained either
from a “free flight” of the system without any event
taking place between* andt or from any next event
occurring at an intermediate tinsé € [ 7% t] (see Fig. 4,
from which the conditional pdf is further considered.

*

S t
{ ]

I I

(a,k) (@ = ge(m" = 7,0),k) (gr(s* —7%,2%),7)

] I

(Z,9)

Fig. 4. Evolution of the process variables and configurations up to a next event.
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In mathematical terms, we write
(X, i,t|0% Kk 757,74, A)
= 6ik'5()_( - gi (t - ’T*,U*))(l - Pi (t;T*vT! u*! ?AvA))

t s* t
+ > ds*f dsf drg 7 (X,1,t|Gk(s* — 7%,0%),],8% S, T4s(a}, A +{G})
GZA j T* T T*

~

X 8y (s —1)8(s* — 76) P (s 7%, 7,05, 7y, A
+33
A T

X 8(s—s*) >, pS(s*;77,0% 74, ASS(A— A)

GeA

=6ik-6(X— Qi (t—7%,0")(1— Pi(t;7%, 7,074, A))

t s*
ds*f ds(X,i,t|gc(s* — 7%0%),],85,74,A")

t
+ > f dre 7m(X,i,t|G(7e — 75,0%),K, 76,7, Taricy A +{G}) - p&*(16; 7%, 7,05, 74, A)
GgA I+

t
+>> f ds7(R,i,t|Gu(s— 7%0%),],5,574,A") > Pe(s757,0574, A)85(A— A') . (B.6)
A * Ge A

Though one could be reluctant to consider Eg}6) in detall, its interpretation is straightforward. The first term
corresponds to the abovementioned free flight, where the system keeps evolving in the same state, while no activated
stimulus leads to a change in dynamics and no additional stimulus activation takes place. The integral terms make the
bridge between the conditio@* k,7*7,.4) and a condition(g.(s* — 7*0*),j,s%s,.A’), posterior in time and
corresponding to the status of the system after a first event, either a new activation or a change in dynamics. In the
first case, the state and entry time are of course conserved. In the second case, the last event is from now on a change
in dynamics before any other event can take place and leads the system intp stiftethe stimuli remaining
activated forming setl’. This time, there is no need to integrate any componemaince this vector appears as a
conditioning variable in the pdf and not as one of its arguments, such as in the forward case.

APPENDIX C
ADAPTATION OF THE MODELING IN THE ASSUMPTION OF FACTORIZATION

C.l. SEMI-MARKOV TREATMENT OF STIMULUS-ACTIVATED TRANSITIONS

Some simplification can be brought to the developments given in([28%.(23), and(24) if we adopt again the
assumption of factorization between the distribution of the sojourn time in a plant configuratiehthe transition
probabilities out ofi (see Appendix A In this case, we have to consider the probabipfi(t; ) dt of leaving
dynamicsi because of the occurrence of the event associatedryélfter a timedt aboutt, given this configuration
was entered al. Indexing the transition probabilities with the stimulus causing the transition( 22y becomes

p(Ri, ) =22 dedU[W(U,LT)(S(T) +o(0,j,D]8(Xx—gt—7,0)p (t—70pe(j —ilx) . (C.D

F j#i Yo
Alternatively, we can introduce, within this assumption of factorization, the outgoing defsig/i, t), conditional
to stimulusF having triggered the event causing the branching out ©his outgoing density obeys an adapted form

of Eq. (4):
e(xi)=33 chhqﬂmmWﬂ+E%w¢meanﬂ
j#i G Jo G

X 8(X—g(t—r7,0)-pF(t—7;0) . (C.2
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The probability densityr can then be expressed in a way equivalent to(Eg).

t
m(xit) = dffdl] [w(u,i,f)a(f) + 3 9e(0,],7)Pol | —>i|U)]
j#i Yo G
XS8(X—G({t—7,0)[1-P(t—m7;0)] .
As for the backward formulation E@B.3), in this assumption it becomes

(X, i1t|)_(01 K to) = 6y (X — Gi(t—to, X)) [1— Pi(t — t5; %)l

+ 22 plf(T_tO;Xo)ﬁF(k%j|gk(T_tO!)_(O))ﬂ-()_(’i!t‘GK(T_t01)_(0)!j!7) dr . (C3)

j#k F to

C.Il. GENERAL NON-MARKOV TREATMENT

In this case, we can resort again to outgoing densities, which are defined in the following way:

o Yyhu(X,i,1,74,A) is the outgoing density out of dynamicat pointx and timet, via theF-induced event if the
state transition ignteredwith a setA of activated stimuli— F € A)

e Ye(X,i,1,7,74,A) is the activation density of stimuli#sin configurationi, at(X,t), for an entry ini at7, and
a setA of stimuli already activatetbefore(— F & A). Therefore, the reference to the activation titig not

redundant in this case as it was when modeling the problem with ingoing deriseiesSec. IV.¢. Yet, the
equalityt = 7= must be accounted for as soon as.4dt updated.

We also introduce in the transition probabilities the rules of disactivation of the stimuli associated with a given
transition, in the formpg(j — i|0; A" — A), with the subsequent update®f in 74. Note that the probability per
unit time of a transition out of via the event induced by stimulus [see Eq.(33)] no longer depends on the

configuration reached after the transition. In order to avoid any confusion witk32g.we will write this quantity
pi(t, ’T*,T, U*, 7?_,4,./4).
With these notations, iF € A, we have

‘pc';ut()_(a iv t, ?AIA)
t -
= J/dUJ/ dT*J dTa()_(_ gi(t_T*!U))pii(t;T*lTlui?A1A)
[e] [0}

% [ > Y00, 77, T e AHGHS (77 — 76)

GEA

SR |

A'DA GEA' j#i Jo

f A7 a4 Pon(0,], 7570, ADS(TF — T)Ps(j = A > A)| . (CH

Again, a multiple integral on the components7of, 4, since the corresponding activation times do not condition the

future evolution of the system after the change of dynamics. Contributions corresponding to all acceptable adfjvation
times for this subset of stimuli must then be accounted for.

From the definition of the outgoing activation density hereabove, we must have thi§ téngl. Then,
Pe(X,0,t,7,74,A)

= (SA,QB(T)de 7(0,i,0)8(X — g (t,0))pF*(t;0,0,0,7x, )
+ fduj dr*8(X—gi(t— 7%0)pf*(t;7%7,0,74,4)

X [ > Ye(0,i, 77, Fapey, A{GHS (77 — 76)

GeA

S|

A'DA GEA' j#i YO

f d’?Af/Alﬂc%t(u,j,T*,’?A',A,)S(T*_’T)er(j—)i|U;A,%A) . (C5)
o
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Again, such as in Eq.35), we can observe an additional term associated with the first activation in the transient
history.
Alternatively to Eq.(36), the probability distribution in configurationcan finally be expressed as

m(X,i,t;A) = 6A,@fd1]7r(u,i,o)6(>‘<— G (t,0))(1 — P;(t;0,0,0,7x,9))
X fdﬂf dT*fT* deT*...fT*d?Aﬁ()'(— G(t—750)1—P(t;7%7,0,74,A))

% { > e(00,7°,7, T a6y, A{GHS (77 = 76)

GEA

+ > X Ef f A7 4y b S0, ], 7574, AN (7* — T)Pe(j —il0, A" — A)| . (C.6)

A'DA GEA' j#i
Finally, we will give the backward form of Egs. XXX with these assumptions, starting fron{ EE6): a
77()_(1 Iut|U*’ k’T*’Tv?/hA) = 8ik'5()_(_ gi (t - T*!U*))(l_ Pi(t;T*!T! _*17_-:41-’4))

t
+ J_ dTG Z ka*(TG;T*!TiU*i?A1-A)7T()_(1ilt|U*! k’TGyTa?A+{G}1-A+{G})
T* GgA

t
+ 2 dS E plg(S;T*aTvU*:?AvA)E ﬁG(k%J ‘gk(s_ T*,U*),A% A,)

j#k Jr*  GeAa A
X (X,1,t|g(s— 7%;0%),j,5,8,74,A4") , (C.7

where the assumption of factorization between the dis
tribution of the transition time and the transition prob- 2. N. SIU, “Risk Assessment for Dynamic Systems: An Over-
abilities was introduced. As before, we haué = view,” Rel. Eng. Syst. Safet3, 43(1994).

Ok(7* — 7,0).

In this expression, we have willingly used in the two 3. J. DEVOOGHT and C. SMIDTS, “Probabilistic Reactor
integrals two different dummy variablés* ands, re- Dynamics—I. The Theory of Continuous Event TreeNyicl.
spectively in order to highlight the interpretation of each Sci. Eng, 111, 229(1992.
term. The first one corresponds to the activation of a new
stimulus, with this last event taking place at tisieThe ~ 4. J. M. IZQUIERDO, E. MELENDEZ, and J. DEVOOGHT,
second one is associated with a change in dynamic%'?elat!P”Sh'p Between Probabilistic Dynamics and Event
with s being the entry time in the new state. Both events '¢€S."Rel. Eng. Syst. Safety2, 197(1996.

have to occur after*, where the system is known to be o

at pointa*. 5. J. DEVOOGHT and C. SMIDTS, “Probabilistic Dynam-
ics as a Tool for Dynamic PSARel. Eng. Syst. Safety2, 185
(1996.
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